期刊文献+

互补色小波域自然场景统计显著图模型 被引量:2

A natural scene statistical saliency map model in complementary color wavelet domain
下载PDF
导出
摘要 传统显著图(Saliency map)通常基于灰度图像+彩色拮抗辅助通道的模型。其未能整体充分考虑颜色通道之间、颜色与方向等显著性要素之间关系.为了克服这样的缺点,本文将人眼视觉有重要作用的互补色理论引入小波设计,提出一种基于自然场景的高斯尺度混合模型(Gaussian scale mixture, GSM)及其分区归一化变换(Divisive normalization transformation, DNT)的彩色整体显著图模型.实验结果表明,该模型较其他同类模型有显著优越性,特别在处理色彩丰富的场景时能大幅提高与人眼视觉机制一致性. Traditional saliency map models are usually based on grayscale images and auxiliary color antagonism channels, not carefully considering the relations of the key saliency elements such as relations among color channels and orientations. To overcome this disadvantage, in this paper, we introduce the complementary color theory into the wavelet designs and propose a holistic color saliency map model based on the Gaussian scale mixture(GSM) of natural scene statistics and its Divisive normalization transformation(DNT) in the wavelet domain. The experimental results show that our model achieves better consistency with the visual attention mechanism of the human eyes, especially in processing colorful scenes.
作者 陈扬 张建秋 CHEN Yang;ZHANG Jian-qiu(School of Information Science and Technology,Fudan University,Shanghai 200433,China)
出处 《微电子学与计算机》 北大核心 2019年第3期17-22,27,共7页 Microelectronics & Computer
基金 国家自然科学基金(61571131)
关键词 显著图 自然场景统计分布 小波变换 互补色 saliency map natural scene statistics wavelet transform complementary colors
  • 相关文献

参考文献1

二级参考文献23

  • 1Engelke U, Kaprykowsk H, Zepernick H J, et al. Visual attention in quality assessment[J]. SignalProcessing Magazine, IEEE, 2011,28(6).. 50-59.
  • 2Kowler E. Eye movements.. The past 25 years [J]. Vision Research, 2011,51(13): 1457-1583.
  • 3Carrasco M. Visual Attention: The past 25 years [J]. Vision Research, 2011,$1(13) : 1484-1525.
  • 4Treisman A M and Gelade G. A feature-integration theory of attention [J]. Cognitive Psychology, 1980, 12(1) : 97-136.
  • 5Wolfe J M, Cave K R, and Franzel S L. Guided search: An alternative to the feature integration model for visual search [J]. Journal of Experimental Psychology: Human perception and performance, 1989,15(3) : 419-433.
  • 6Koch C, Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry [M]. Nether lands: Springer, Matters of Intelligence. 1987 : 115-141.
  • 7Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1998,20(11) : 1254 1259.
  • 8Walther D, Koch C. Modeling attention to salient proto-objects [J]. Neural Networks, 2006, 19(9): 1395-1407.
  • 9Ma Q, Zhang L. Saliency-based image quality assessment criterion. Advanced intelligent computing theories and applications, with aspects of theoretical and methodological issues[M]. Berlin Heidelberg: Springer, 2008: 1124-1133.
  • 10Toet A. Computational versus psychophysical bottom-up image saliency: A comparative evaluation study [J] Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2011,33(11) : 2131-2146.

共引文献3

同被引文献23

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部