期刊文献+

一阶时滞微分方程临界状态下解的振动性

Oscillation of Solutions of First Order Delay Differential Equations in a Special Critical State
下载PDF
导出
摘要 讨论了在临界状态下一阶时滞微分方程解的振动性 。 In this paper, we consider the oscillation of solutions of first order differential equations in a special critical case.The sufficient conditions for oscillation of all solutions are obtained.
机构地区 许昌师专数学系
出处 《许昌师专学报》 2002年第2期4-9,共6页 Journal of Xuchang Teachers College(Social Science Edition)
基金 河南省自然科学基金资助项目 (0 1110 5 0 12 0 0 )
关键词 一阶时滞微分方程 振动性准则 临界状态 充分条件 积分性条件 delay differential equation, oscillation, a special critical state.
  • 相关文献

参考文献12

  • 1[1]G.ladas,sharp conditions for oscillation caused by delay. Applicable Analysis[J] .1979,(9) :93-98.
  • 2[2]G. Ladas, V. Laskhmikanthanthand J. S. Papadakis. Oscillations of higher-order reatarded differential equations generated by retarded argument, In delay and Functional Differntial Eauntions and Their Application[ M] .New York,London, 1972, (9):219- 231.
  • 3[3]L.H. Erbe and B. G. Zhang. Oscillation of first order linear differntail equations with deviating arguments[J]. Diff, Int, Equ: 1988,(1) :305-314.
  • 4[4]J.S.Yu,Z.C.Wang,Some further results on oscillation of neutral diferential equations[J] .Bull. Austra.Math. Soc,1992,(46):149- 157.
  • 5[5]A.D.Myshkis,Linear homogenous differential equations of first order with deviating argunents[J] .Uspekhi mat. Nauk,1950,(150),160-162(Russion).
  • 6[6]L.H.Erbe,Oingkai kong and B.G.Zhang.Oscilation Theory for Functional Differetial Equations[M] .Marcel Dekker, New Yourk,1995.
  • 7[7]I Gyori and G.Ladas. Qscillation Theory of Delay differential Equations with Applications[M] .Clarendon Press,Oxford,1991.
  • 8[8]J.K.Hale,Throry of Functional Differential Equations, Springer-verlagf[M] .New York,1997.
  • 9[9]G.S.Ladde,class of functional equations with applications[J] .Nonlinear Analysis,1978,(21):259- 261.
  • 10[10]J. S. Yu, Z. C. Wang, B. G. Zhang and X. Z. Qian, Oscillations of differential equations with deviting arguments [J]. Pan Math. J.1992, (2) :59-78.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部