一阶时滞微分方程临界状态下解的振动性
Oscillation of Solutions of First Order Delay Differential Equations in a Special Critical State
摘要
讨论了在临界状态下一阶时滞微分方程解的振动性 。
In this paper, we consider the oscillation of solutions of first order differential equations in a special critical case.The sufficient conditions for oscillation of all solutions are obtained.
出处
《许昌师专学报》
2002年第2期4-9,共6页
Journal of Xuchang Teachers College(Social Science Edition)
基金
河南省自然科学基金资助项目 (0 1110 5 0 12 0 0 )
参考文献12
-
1[1]G.ladas,sharp conditions for oscillation caused by delay. Applicable Analysis[J] .1979,(9) :93-98.
-
2[2]G. Ladas, V. Laskhmikanthanthand J. S. Papadakis. Oscillations of higher-order reatarded differential equations generated by retarded argument, In delay and Functional Differntial Eauntions and Their Application[ M] .New York,London, 1972, (9):219- 231.
-
3[3]L.H. Erbe and B. G. Zhang. Oscillation of first order linear differntail equations with deviating arguments[J]. Diff, Int, Equ: 1988,(1) :305-314.
-
4[4]J.S.Yu,Z.C.Wang,Some further results on oscillation of neutral diferential equations[J] .Bull. Austra.Math. Soc,1992,(46):149- 157.
-
5[5]A.D.Myshkis,Linear homogenous differential equations of first order with deviating argunents[J] .Uspekhi mat. Nauk,1950,(150),160-162(Russion).
-
6[6]L.H.Erbe,Oingkai kong and B.G.Zhang.Oscilation Theory for Functional Differetial Equations[M] .Marcel Dekker, New Yourk,1995.
-
7[7]I Gyori and G.Ladas. Qscillation Theory of Delay differential Equations with Applications[M] .Clarendon Press,Oxford,1991.
-
8[8]J.K.Hale,Throry of Functional Differential Equations, Springer-verlagf[M] .New York,1997.
-
9[9]G.S.Ladde,class of functional equations with applications[J] .Nonlinear Analysis,1978,(21):259- 261.
-
10[10]J. S. Yu, Z. C. Wang, B. G. Zhang and X. Z. Qian, Oscillations of differential equations with deviting arguments [J]. Pan Math. J.1992, (2) :59-78.
-
1李云红.测度链上时滞微分方程多个正解的存在性[J].辽宁师专学报(自然科学版),2008,10(3):1-2.
-
2刘兴元.一阶时滞微分方程的振动性[J].邵阳学院学报(自然科学版),2006,3(4):2-4.
-
3谢婉雯.一阶时滞微分方程周期边值问题单调迭代法[J].深圳大学学报(理工版),2005,22(4):303-306.
-
4张绍康.一阶时滞微分方程的周期解[J].云南师范大学学报(自然科学版),2010,30(4):14-17. 被引量:1
-
5张正球,罗交晚.具有正负系数的—阶时滞微分方程解的渐近性[J].湖南大学学报(自然科学版),1995,22(6):26-32.
-
6王晓萍,廖六生,杨立洪,彭宏.具正负系数一阶时滞微分方程解振动充要条件[J].华南理工大学学报(自然科学版),1997,25(5):104-108.
-
7武冬.一个一阶时滞微分方程的振动准则[J].青岛海洋大学学报(自然科学版),1993,23(4):126-130.
-
8鲁大庆.具有正负系数的─阶时滞微分方程解的有界性、渐近性、振动性[J].湘潭矿业学院学报,1995,10(1):68-74. 被引量:1
-
9翁爱治.一阶时滞微分方程正周期解的存在性问题(英文)[J].工程数学学报,2016,33(1):106-110. 被引量:1
-
10张露,刘瑞宽.一阶时滞微分方程正周期解的存在性[J].四川师范大学学报(自然科学版),2014,37(5):649-652. 被引量:5