期刊文献+

基于Fisher准则的多特征融合 被引量:8

Multifeature Fusion Based on Fisher Discriminant Criterion
下载PDF
导出
摘要 阐述了单个特征向量及其鉴别矢量与模式可分性的关系最佳鉴别矢量使模式关于该特征具有最大的可分性。给出了多特征融合的一,种方法,它综合考查了模式对不同的特征、不同的鉴别矢量的可分性,由多个特征经融合产生的新特征吸收了单个特征的对模式分类的优势。手写体汉字的识别试验验证了所给方法的有效性。 The relationship between single feature vector together with its discriminant vector and the separability the pattern can get is discussed in this paper, from that we know optimal discriminant vector can result in the best separability. We propose a new method of multi-features fusion in this paper, it considers all discriminant performances made by different features and different discriminant vectors, and the new feature produced by multi-features fusion has the advantages hold by every single feature. The experiments of handwritten Chinese character recognition show the effectiveness of the proposed approach.
出处 《计算机工程》 CAS CSCD 北大核心 2002年第3期41-42,共2页 Computer Engineering
关键词 FISHER准则 手写体汉字 多特征融合 信息融合 信息处理 汉字识别 Fisher discriminant criterionDiscriminant vectorFeature fusionHandwritten Chinese character recognition
  • 相关文献

参考文献5

  • 1[1]Abidi M A, Gonzalez R C. Data Fusion. San Diego: Academic Press,1992
  • 2[2]Josef K, Mohamad H. On Combining Classifiers. IEEE, Transaction on PAMI, 1998,20(3):226-239
  • 3[3]Foley D H ,Sammon J W Jr. An Optimal Set of Discriminant Vectors.IEEE Trans. Computer, 1975,24(3):281-289
  • 4[4]Liu K,Yang J. An Efficient Algorithm for Foley-sammon Optimal Set of Discriminant Vectors by Algebraic Method. International Journal of Pattern Recognition and Artificial Intelligence, 1992,6(5): 817-829
  • 5[5]Tang Y T. Offline Recognition of Chinese Handwriting by Multifeature and Multilevel Classification. IEEE Transaction on PAMI. 1998, 20(5):556-561

同被引文献74

引证文献8

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部