期刊文献+

二次挖掘相联规则算法 被引量:6

Algorithm for Mining Update Association Rule
下载PDF
导出
摘要 通过研究、分析FUP等算法 ,提出用于二次挖掘相联规则的算法SuperFUP。该算法更多关注的是新增数据 ,只对整个数据库扫描一次就能在变更的数据中发现相联规则 ,从而提高了算法效率。 Data scale and knowledge can be changed with the time,so it is necessary to estallish update association rule.Therefore,algorithm of SuperFUP is derived on basis of algorithm of FUP.Proposed algorithm is characterized by the fact that it only scans whole database once and pay more attention to updated data,so SuperFUP is more efficient.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2002年第2期73-77,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金资助项目 (6 98730 19) 吉林省自然科学基金资助项目 (19990 5 2 8)
关键词 数据挖掘 相联规则 算法 二次挖掘 数据库 data mining association rule algorithm
  • 相关文献

参考文献3

二级参考文献7

  • 1[1]Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases. In: Proc ACM SIGMOD Conference on Management of Data, Washington D C, 1993. 207-216
  • 2[2]Agrawal R, Srikant R. Fast algorithms for mining association rules. In: Proc 20th VLDB Conference Santiago,Chile, 1994. 487-499
  • 3[3]Houtsma M, Swami A. Set-oriented mining of association rules. IBM Almaden Reserch Center,Research Report RJ 9567, 1993
  • 4[4]Bayardo R, Agrawal R. Mining the most interesting rules. In: Proc KDD-99, San Diego, 1999. 122-131
  • 5[5]Agrawal R, Mannila H, Toivonen H, Verkamo A. Fast discovery of association rules. In: Fayyad U,Piatetsky-Shapiro G Symth P, Uthurusamy R eds. Advances in Knowledge Discovery and Data Mining. New York: AAAI/MIT Press, 1996. 307-328
  • 6胡侃,夏绍玮.基于大型数据仓库的数据采掘:研究综述[J].软件学报,1998,9(1):53-63. 被引量:256
  • 7冯玉才,冯剑琳.关联规则的增量式更新算法[J].软件学报,1998,9(4):301-306. 被引量:227

共引文献257

同被引文献33

  • 1[1]Han J,Kamber M.Data Mining:Concepts and Techniques[M].北京:高等教育出版,2001:6-7.
  • 2[4]Agrawa Lr.Imielinski T,Swami A.Mining Association Rules Between Sets of Items in Large Databases[C].In:Buneman P,Jajodia S,eds.Proc.of the ACM SIGMOD Conf.on Management of Data (SIGMOD'93).New York:ACM Press,1993.207-216.
  • 3[5]Agrawal R.Srikant R.Fast Algorithms for Mining Association Rules[C].Proceedings of the 20th Int'l Conference on Very Large Databases,Santiago,1994,487-499.
  • 4[7]Han J,etal.Mining Frequent Patterns Without Candidate Generation[C].In:Proceedings of SIGMOD 2000,Dallas,TX.America.2000.
  • 5[1]D W Cheung,etc.Maintenance of Discovered Association Rules in Large Databases:An Incremental Updating Technique,Proceedings of the 12th International Conference on Data Engineering,New Orleans,Louisana(E),1996,106-114
  • 6[3]Agrawal R,Srikant R.Fast Algorithms for Mining Association Rules.Santiago,Chile:Proceedings of the 20th International Conference on Very Large Databases,1994.9,487-499
  • 7R.Agrawal,T.Imielinski,A.Swami.Mining Association Rules Between Sets of Items in Large Databases[C] //Proc.of the ACM-SIGMOD Intl.Conf.on Management of Data,1993,5:207-216.
  • 8R.Agrawal,A.Swami.Fast Algorithms for Mining Association Rules[C] //Proc.of the 20th Intl.Conf.On Very Large Data Bases,1994,9:487-499.
  • 9Hannu Toivonen.Sampling Large Databases for Association Rules[C] //Proceedings of the 22nd VLDB,Numbai(Bombay),India,1996,9.
  • 10D.Cheung,J.Han,V.Ng,et al.Maintenance of Discovered Association Rules in Large Databases:An Incremental Updating Technique[C] //Proc.of the 12th Intl.Conf.On Data Engineering,1996,2.

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部