期刊文献+

Bayes网络与关系模型的集成:概率关系模型 被引量:1

The Integration of Bayesian Network s &Relational Models:Probabilistic Rel ational Models
下载PDF
导出
摘要 对象关系模型和Bayes网络分别是关系理论和概率理论两个不同领域中最重要的模型,它们首次集成于本文引入的概率关系模型中。作为新型的概率模型,概率关系模型不仅继承了Bayes网络的大部分优点,而且关系特征和对象的概念使它能有效地克服Bayes网络在许多方面的不足,而成为对复杂系统建模的理想工具,是对Bayes网络的重要创新;作为新型的关系模型,概率关系模型也是对传统关系模型的重要创新,具备概率特征的对象关系模型有了处理不确定性问题的能力。概率关系模型的创建对复杂智能信息系统开发研究有着特别重要的意义。本文首先评述Bayes网络和对象关系模型,然后在此基础上引入概率关系模型。 Object Relation al Models and Bayesian Networks are most important models respectively belong to two complete dif-ferent domains of Relational theory and Probabilistic theory ,they are first integrated into Probabili stic Relational Models introduced in this paper.As a new type of Probabi listic Models,Proba-bilistic Relational M odels not only inherits bulk of strongpoint of Bayesian Networks,its character of relation and concep t of object causes it can overcome manyaspects o f shortc omings and become ideal tool of mod eling complex system as well,is an importa nt innovation on Bayesian Networks.As a new type of Relational Models,Probab ilistic Relational Models is also an important in-novation on traditional Relat ional Models:Object Relational Models possessing probabilistic ch aracter is ab le to deal with uncertainty.The creation of Probab ilistic Relational Models is very important to development and re search complex intelligent system.This p aper first comments Ba yesian Networks and Object Relational Models,then introd uction Probabilistic Re lational Models on the basis of that.
机构地区 合肥工业大学
出处 《微电子学与计算机》 CSCD 北大核心 2002年第3期8-13,共6页 Microelectronics & Computer
关键词 概率模型 BAYES网络 对象关系模型 概率关系模型 专家系统 Probabilistic models Bayesian networks Object Relational models Pr obabilistic r elational models
  • 相关文献

参考文献1

二级参考文献11

  • 11.Chickering D. Learning equivalence classes of Bayesian networks structures. In: Horvitz E, Jensen F ed. Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1996. 54~61
  • 22.Geriger D, Hekerman D. A charactererization of the Dirichlet distribution with application to learning Bayesian networks. In: Besnard P, Hanks S eds. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc., 1995. 196~207
  • 33.Heckman D. A Bayesian approach for learning causal networks. In: Besnard P, Hanks S eds. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1995. 285~295
  • 44.Heckman D, Geiger D, Chickering D. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 1995,20(3):197~243
  • 55.Heckman D, Shachter R. Decision-Theoretic foundations for causal reasoning. Journal of Artificial Intelligence Research, 1995,3:405~430
  • 66.Heckman D, Mandani A, Wellman M. Real-World applications of Bayesian networks. Communications of the ACM, 1995,38(3):38~45
  • 77.Buntine W. Theory refinement on Bayesian networks. In: Proceedings of the 7th Conference on Uncertainty in Artificial Intelligence. Los Angeles, CA: Morgan Kaufmann Publishers, Inc., 1991. 52~61
  • 88.Cooper G, Herskovits E. A Bayesian method for the introduction of probabilistic networks from data. Machine Learning, 1992,9(4):309~347
  • 99.Russell S, Binder J, Koller D et al. Local learning in probabilistic networks with hidden variables. In: Cooper G F, Moral S ed. Proceedings of the 14th International Joint Conference on Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1998. 1146~1152
  • 101999-03-15

共引文献99

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部