摘要
该文给出了基于动态递归神经网络的无刷直流电动机自适应逆控制方案 ,它可以处理电机非线性、变参数的影响。通过使用动态递归网实现了对象逆动态模型的在线控制 ,分析和仿真表明这种方法具有较好的自适应性及良好的收敛性能 ,且具有灵活、简单、方便等特点 。
Adaptive inverse control strategy of BDCM, which is suitable for AC servo system, is presented based on dynamic recurrent neural network. Using dynamic recurrent neural network, inverse model is achieved to online control. The results of study and simulation show that the method has characteristics of dexterity, simple and convenience, and also has better adaptability and good performance of convergence.
出处
《计算机仿真》
CSCD
2002年第1期101-103,共3页
Computer Simulation
关键词
无刷直流电动机
动态递归神经网络控制
直接自适应逆控制
Brushless direct current motor (BDCM)
Dynamic recurrent neural network control (RNC)
Direct adaptive inverse control