期刊文献+

二进仿射小波包

Dyadic affine wavelet packet
下载PDF
导出
摘要 自从小波包概念提出以来 ,关于这一方面的研究吸引了许多数学家的兴趣。到目前为止 ,在L2 (RS)中关于正交与非正交小波包、可分与非可分小波包的研究已取得丰硕的成果 ,其中 S是一给定的自然数。CHUI和 LI在 R上有界一致连续函数空间上引入了插值多分辨分析的概念并给出了这一空间函数的二进仿射小波分解。本文在这一空间引入并利用泛函小波变换研究了二进仿射小波包 ,对这一空间的任一函数 ,给出了逐点收敛的二进仿射小波包分解 . The study of wavelet packets has attracted interest of many mathematicians since its introduction. Up to now, rich results have been obtained about orthogonal and nonorthogonal wavelet packets, separable and nonseparable wavelet packets in \%L\%\+2(R\+S), where \%S\% is a fixed positive integer. CHUI and LI introduced the interpolating multiresolution analysis in the space of bounded and uniformly continuous functions defined on R and gave the dyadic affine wavelet decomposition of the functions in this space. The dyadic affine wavelet packet in this space is introduced and addressed in terms of functional wavelet transform. For any function in this space, a dyadic affine wavelet packet decomposition with pointwise convergence is obtained.
出处 《浙江大学学报(理学版)》 CAS CSCD 2002年第1期1-7,共7页 Journal of Zhejiang University(Science Edition)
基金 国家自然科学基金资助项目 (6 9735 0 2 0 ) 北京市自然科学基金资助项目 (10 130 0 5 ) 北京市教委基金资助项目(0 1KJ- 0 19)
  • 相关文献

参考文献4

  • 1[1]CHARLES K Chui, LI Chun. Dyadic affine decomposition and functional wavelet transforms [J]. SIAM Math Anal, 1996, 27:865-890.
  • 2[2]JIA R Q, MICCHELLI C A. Using the refinement equation for the construction of prewavelets Ⅱ: Powers of two[A]. LAURENT P J, LE Méhacuté A, SCHUMAKER L L. Curves and Surfaces[C]. Boston: Academic Press, 1991. 209-246.
  • 3[3]SHEN Zuo-wei. Nontensor product wavelet packet in L-2(Rs) [J]. SIAM J Math Anal, 1995, 26:1061-1074.
  • 4[4]MICCHELLI C A. Using the refinement equation for the construction of pre-wavelets[J]. Numeri Algorithms, 1991, 1:75-116.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部