期刊文献+

电力系统负荷建模与预测的新方法 被引量:5

New Methods of Power System Load Modeling and Forecasting
下载PDF
导出
摘要 对电力系统辨识及参数预测中新兴方法的应用作了介绍 ,重点探讨了前向BP神经元网络在电力系统辨识及负荷预测中的应用 .主要对电力系统动态负荷建模及中、短期负荷预测中所取得的国内外成果进行探讨 .同时 ,对灰色理论模型进行电力系统长期预测的结果与传统方法进行对比分析 .从而归纳出电力系统动态负荷及中期、短期、长期负荷预测的较理想方法 . A lot of methods have been used in power system load modeling and forecasting. Armed with the theorems recently developed on the approximation capability of artificial neural networks, power system dynamic load modeling and an adaptive modular hourly load forecaster are discussed and studied by artificial neural network in this paper. The results verify that this method can emulate load dynamics well and the forecaster produces accurate results.
出处 《沈阳建筑工程学院学报(自然科学版)》 2002年第2期149-151,共3页 Journal of Shenyang Architectural and Civil Engineering University(Nature Science)
基金 辽宁省自然科学基金资助 (0 0 2 10 7)
关键词 人工神经元网络 系统辨识 动态负荷 BP学习法 电力系统 负荷预测 负荷建模 灰色系统理论 artificial neural networks dynamic load approximation BP approaches
  • 相关文献

参考文献9

  • 1Dovan T, Dillon T S, Berger C S. "A Microcomputer Based On-Line Identification Approach to power System Dynamic Modeling" [J]. IEEE Trans On Power Systems, Aug. 1987, 2(2): 529 - 536.
  • 2Thomas R J and Bih-yuan ku. "Approximations of power system dynamic load characteristics by artificial networks" [ A]. Proceedings of the 1^st international forum on Applications of Neural Networks to Power Systems[C]. Washington, 1991.
  • 3Cho H S, Park J K, Kim G W, et al." Power System Transient Stability Analysis Using a New Condensed Nearest Neighbor Rule for Kohonen Neural Network"[A]. ISAP'99[C]. Rio de Janeiro(brazil): 1999.
  • 4Alireza Khotanzad, Peng P, Marks R J." Short Term Peak Load Forecast Using a Neuro-Fuzzy Model" [A].ISAP' 99 [ C]. Rio de Haneiro(Brazil): 1999.
  • 5Srinivasan K, Robichaud Y, Rodgers G. "Load Response Coefficient Monitoring System: Theory and Field Experience"[J]. IEEE Trans. On Power Apparatus and System, Vol. PAS - 100 Aug. 1981: 3818 -3827.
  • 6Wprice W, Wirgan K A, EI-kady M A. "Load Modeling Power Flow and Transient Stabulity Computer Studies"[J]. IEEE Trans. On Power Systems, 1988,3(1): 180 - 187.
  • 7王勇骥,涂健.神经元网络控制[M].北京:机械工业出版社,1998:303-305.
  • 8Papalexopoulos A D, Hesterberg T C. A Regression-Based Approach to Short-Term System Load Forecasting[J]. IEEE Tran. PWRS, 1990, 5(4): 1535 - 1644.
  • 9Brace M C, Schmidt J, Hadin M. Comparisie of the Forecasting Accuracy of Neural Networks with Other Established Techniques [ A ]. Proceedings of the fist International Forum on Applications of Neural Networks to power systems[C]. Seattle, 1991.

共引文献1

同被引文献18

  • 1黄家圣,谢卫,李军军,孙凌燕.电力系统短期负荷预测的多神经网络集成模型[J].上海海事大学学报,2005,26(3):64-67. 被引量:3
  • 2Filatov N M, Keuchel U. Dual control for unstable mechanical plant [ J ]. IEEE Control Systems, 1996, 16 ( 4 ) :31 - 37.
  • 3Ying H Analytical structure of a two-input, two-outputfuzzy controller and its relation to PI and multilevel relay controller[J]. Fuzzy Sets and Systems, 1994, 66(3) : 21 -33.
  • 4陶永华.新型PID控制及其应用[M].北京:机械工业出版社,2002..
  • 5邓聚龙.灰色预测与决策[M].武汉:华中理工大学出版社,1990.
  • 6刘晨晖.电力系统负荷预报理论与方法[M].哈尔滨:哈尔滨工业大学出版社,1986.
  • 7梁绍荣.普通物理学[M].北京:高等教育出版社,1988.
  • 8阿瑟、贝塞尔.物理学基本概念[M].上海:上海教育出版社,1983.
  • 9何世湘.大学物理学[M].重庆:重庆大学出版社,1987.
  • 10夏志、高师大理科教材[M].大连:辽宁师范大学出版社,1997.

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部