摘要
对电力系统辨识及参数预测中新兴方法的应用作了介绍 ,重点探讨了前向BP神经元网络在电力系统辨识及负荷预测中的应用 .主要对电力系统动态负荷建模及中、短期负荷预测中所取得的国内外成果进行探讨 .同时 ,对灰色理论模型进行电力系统长期预测的结果与传统方法进行对比分析 .从而归纳出电力系统动态负荷及中期、短期、长期负荷预测的较理想方法 .
A lot of methods have been used in power system load modeling and forecasting. Armed with the theorems recently developed on the approximation capability of artificial neural networks, power system dynamic load modeling and an adaptive modular hourly load forecaster are discussed and studied by artificial neural network in this paper. The results verify that this method can emulate load dynamics well and the forecaster produces accurate results.
出处
《沈阳建筑工程学院学报(自然科学版)》
2002年第2期149-151,共3页
Journal of Shenyang Architectural and Civil Engineering University(Nature Science)
基金
辽宁省自然科学基金资助 (0 0 2 10 7)