摘要
研究了如下一类二阶非线性微分系统 dxdt =p(y) ,dydt =- f(t ,x ,y) q(y) -k(y) g(x)的解的渐近性态 .在系统具有适当保证所有解有界的条件成立时 ,证明了其每个解收敛于奇点 .所获结果改进和推广了文 [1,2
In this paper, we study the asymptotic behavior of the following a second-order differential system dxdt=p(y), dydt=-f(t,x,y)q(y)-k(y)g(x), Assume that some suitable conditions to ensure the bounded ness of all solution hold. We prove that every solution of the system is convergent to equilibrium; All results of paper are extended and improved.
出处
《安徽师范大学学报(自然科学版)》
CAS
2002年第1期7-10,共4页
Journal of Anhui Normal University(Natural Science)
基金
湖南省教育厅科研基金资助项目 ( 0 0C2 99)
关键词
二阶微分系统
奇点
解
有界
收敛性
初值问题
渐近性态
轨线
Second order differential system
equilibrium
solutions
bounded neww
convergence. Key words:second-order differential system
equilibrium
solutions
bounded neww
convergence