期刊文献+

一类二阶微分系统的解的收敛性

ON CONVERGENCE OF SOLUTIONS FOR A CLASS OF SECOND-ORDER DIFFERENTIAL SYSTEMS
下载PDF
导出
摘要 研究了如下一类二阶非线性微分系统       dxdt =p(y) ,dydt =- f(t ,x ,y) q(y) -k(y) g(x)的解的渐近性态 .在系统具有适当保证所有解有界的条件成立时 ,证明了其每个解收敛于奇点 .所获结果改进和推广了文 [1,2 In this paper, we study the asymptotic behavior of the following a second-order differential system dxdt=p(y), dydt=-f(t,x,y)q(y)-k(y)g(x), Assume that some suitable conditions to ensure the bounded ness of all solution hold. We prove that every solution of the system is convergent to equilibrium; All results of paper are extended and improved.
出处 《安徽师范大学学报(自然科学版)》 CAS 2002年第1期7-10,共4页 Journal of Anhui Normal University(Natural Science)
基金 湖南省教育厅科研基金资助项目 ( 0 0C2 99)
关键词 二阶微分系统 奇点 有界 收敛性 初值问题 渐近性态 轨线 Second order differential system equilibrium solutions bounded neww convergence. Key words:second-order differential system equilibrium solutions bounded neww convergence
  • 相关文献

参考文献2

二级参考文献10

  • 1郑观宝,蒋继发.一类二阶方程的解的收敛性[J].高校应用数学学报(A辑),1995,10(1):81-86. 被引量:3
  • 22,Hirsch M W.Systems of differential equations which are competitive or cooperative,Ⅰ:Limit sets[J].SIAM J Math Anal,1982,13:167~169
  • 33,Hirsch M W.Systems of differential equations which are competitive or cooperative,Ⅱ:Convergence almost everywhere[J].SIAM J Math Anal,1985,16:423~ 439
  • 44,Hirsch M W.The dynamical systems approach to differential equations[ J].Bull Amer Math Soc,1984,11:1~64
  • 55,Jiang Jifa.Attractors in strongly monotone flows[J].J Math Appl,1991,162:21 0~222
  • 66,Jiang Jifa.The asymptotic behavior of a class of second-order differe ntial equation with applications to electrical equations[J].J Math Anal Appl,1 990,149:26~37
  • 77,Jiang Jifa.On the asymptotic behavior of a class of monlinear differential eq uations[J].Nonl Anal,1990,14:453~467
  • 8蒋继发,J Math Anal Appl,1991年,162卷,210页
  • 9蒋继发,J Math Anal Appl,1990年,149卷,26页
  • 10蒋继发,J Nonli Anal,1990年,14卷,453页

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部