摘要
多维连续型随机变量的分布函数F(x1 ,… ,xn)与密度函数f(x1 ,… ,xn)的关系是 n x1 … xnF(x1 ,… ,xn) =f(x1 ,… ,xn) ,dF(x1 ,… ,xn) =f(x1 ,… ,xn)dx1 …dxn.利用这一关系给出了用微分法求多维连续型随机变量函数的概率密度的方法及实例 ,在许多情形下 。
The relation between distribution function F(x 1,...,x n) and density function f(x 1,...,x n) of multidimensional continuous type random variables is nx 1...x n F(x 1,...,x n)=f(x 1,...,x n) .Based on this relation,the method and examples of solving probability density of functions of multidimensional continuous type random variables are given by use of differential method. In many cases,it is simpler than the ordinary methods.
出处
《渝州大学学报(自然科学版)》
2002年第1期9-11,共3页
Journal of Yuzhou University(Natural Sciences Edition)
关键词
微分法
概率密度
多维连续型随机变量函数
differential method
probability density
continuous type random variable