期刊文献+

基于网络的数值关联规则挖掘方法

A Lattice-based Mining Algorithm for Quantitative Association Rules
原文传递
导出
摘要 关联规则 ( Association Rules)发现的是属性间的关系 .属性可以是逻辑型的 ,也可以是数值型的 .在从逻辑型属性描述的数据中发现关联规则方面已经有许多比较成熟的算法 ,而在数值型属性方面则不然 .将数值关联规则挖掘问题映射成逻辑关联规则挖掘问题是一种方便有效的方法 .本文给出了一个新的数值属性关联规则挖掘算法 ,该算法利用数据本身的特征决定对数值属性值域的划分 ,进而将划分后的所有区间映射为逻辑属性 (项目 ) ,在此基础上可以挖掘出更容易理解、更具有概括性的有效关联规则 .本文给出了一个发现频繁项目集搜索算法 。 The association rules discovery the relations among the attributes. An attribute can be Boolean or quantitative. There are lots of algorithms for mining Boolean association rules, but few for quantitative. It is an efficient and convenient method to mapping quantitative attributes into Boolean attributes. A new algorithm for mining quantitative association rules is presented in this paper. Quantitative attribute values are partitioned into basic intervals according to the their distribution in the database, and if possible, the adjacent basic itervals will be merged. Then the intervals are mapped into Boolean attributes (i.e., the items) in this way. More understandable, general interesting quantitative association rules can be mined. The algorithm uses a new searching process to enumerate frequent itemsets. Furthermore, the algorithm uses a vertical database format to compute the support of each itemset, where each value or interval is associated with a list of records in which it occurs.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2002年第4期1-9,共9页 Systems Engineering-Theory & Practice
基金 国家自然科学基金 ( 6 9974 0 2 6 70 1 71 0 0 2 )
关键词 数值关联规则 数据挖掘 最小支持度 最小可信度 知识发现 数据库 data mining association rules interval minimum support minimum confidence
  • 相关文献

参考文献11

  • 1[1]Agrawal R, Swani A. Mining association rules between sets of items in very large databases[A]. Proceedings of the ACM SIGMOD Conference on Management of Data[C], 1993, 207-216.
  • 2[2]Agrawal R, Srikant R. Fast Algorithm for Mining association rules in large databases[A]. Proceedings of the 20th International Conference on Very Large Databases[C], 1994,478-499.
  • 3[3]Chen M S, Han J, Yu P S. Data mining: an overview from database perspective[R]. IBM Research Report, RC20556.
  • 4[4]Han J, Fu Y. Discovery of multi-level association rules from large databases[A]. Proceedings of the 21st International Conference on Very Large Databases[C],1995, 420-431.
  • 5[5]Houtsma M, Swami A. Set-oriented mining for association rules in relational databases[A]. Proceedings of the 11th International Conference on Data Engineering[C], 1995, 25-33.
  • 6[6]Park J S, Chen M S, Yu P S. An effective hash based algorithm for mining association rules[A]. Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data[C],1995, 175-186.
  • 7[7]Savaser A, Omiecinski E, Navathe S. An effective algorithm for mining association rules in large databases[A]. Proceedings of the 21st International Conference on Very Large Databases[C], Zuich, Switzerland, 1995, 432-444.
  • 8[8]Fukuda T, Morimoto Y, Morishita S, Tokuyama T. Data mining using two-dimensional optimized association rules: Scheme, algorithms, and visualization[A]. Proceedings of the ACM SIGMOD Conference on Management of Data[C], Montreal, Canada, 1996.
  • 9[9]Fukuda T, Morimoto Y, Morishita S, Tokuyama T. Mining optimized association rules for numeric attributes[A]. Proceedings of the 15th ACM Symposium on Principles of Database Systems[C]. Montreal, Canada, 1996.
  • 10[10]Nearhos J P, Rothman M J, Viveros M S. Applying data mining techniques to a health insurance information system[A]. Proceedings of the 22nd International Conference on Very Large Databases[C], Mumbai (Bombay), India, 1996.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部