期刊文献+

动态时间错位理论及应用研究 被引量:1

A Study on Dynamic Time Warping
下载PDF
导出
摘要 将动态时间错位 (DTW)理论运用于分析和处理间歇反应过程中批次轨迹不同步问题 .在间歇反应过程中 ,由于批次与批次之间物理特性和约束的影响 ,批次轨迹常常具有持续时间不同步的特点 .如果要用统计的方法分析和比较 2个批次轨迹的数据特征 ,首先必须使 2个批次的持续时间长度保持一致 .动态时间错位 (DTW)理论可适时转换、扩张或压缩 2个批次轨迹的局部模式特征 ,取得 2轨迹之间的最短距离和最优同步路径 ,使 2批次轨迹实现同步化 . Dynamic time warping (DTW) is a pattern matching method that can reconcile similar characteristics of two trajectories based on dynamic programming, this technique has been used in the area of speech recognition successfully. This paper discusses the application of dynamic time warping (DTW) to the analysis and disposal unsynchronized trajectories of batch processes. In batch process, due to the presence of batch batch disturbances and existence of physical constraints, batch processes often are characterized by unsynchronized trajectories. To compare these batch histories and apply statistical analysis, one needs to reconcile the timing difference among these histories first. Dynamic time warping (DTW) has the ability to synchronize two trajectories by appropriately translating, expanding, and contracting localized segments within both trajectories to achieve a minimum distance between the trajectories and optimal path, then synchronize two trajectories.
作者 李元 王纲
机构地区 沈阳化工学院
出处 《沈阳化工学院学报》 2002年第1期44-49,共6页 Journal of Shenyang Institute of Chemical Technolgy
关键词 DTW 动态时间错位 模式匹配 最优路径 动态规划 点序列 Dynamic time warping \ pattern matching \ optimal path \ dynamic programming point sequence
  • 相关文献

参考文献4

  • 1[1]Kutsuwa Y,Matsuyama H. An Improved Method of Fault Diagnosis of a Batch Process Using a Pattern Recognition Technique [ J ]. Int. Chemical Engineering, 1992,32 (1): 114 - 122.
  • 2[2]Loukis E, Mathioudakis K,Papailiou K. Optimizing Automated Gas Turbine Fault Detection Using Statistical Pattern Recognition[J]. Journal of Engineering for Gas Turbines and Power, 1994, 116: 165-171.
  • 3[3]Konstantinov K B, Yoshida T. A Knowledge Based Pattern Recognition Approach for Real-time Diagnosis and Control of Fermentation Processes as Variable Structure Plants[ J ]. IEEE Trans. Systems, Man, and Cybnetics, 1991,21 (4): 908 - 914.
  • 4[4]Sakoe H,Chiba S. Dynamic Programming Algorithm Optimization for Sporken Word Recognition [J].IEEE Trans. Acoust. Speech and Signal Process.,1980,26(1) :43 - 49.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部