期刊文献+

可扩展的旋转因子表及FFT算法 被引量:3

An Extendible Look-Up Table of Twiddle Factors for FFT
下载PDF
导出
摘要 该文提出了一个用于快速 Fourier变换计算的反写码序的旋转因子表 ,这种旋转因子表具有可扩展性 :本质上 ,这种旋转因子表的分量与变换的点数无关 .当点数改变时 ,这种旋转因子表无须重新计算或者容易扩展 ;根据这种旋转因子表 ,该文设计了一个结构规整的基于基 4计算 2 n 点 FFT的算法及软件程序 ,该程序与 FFTW软件包进行了对比实验 .文中还以蛋白质序列相似性分析计算为例 ,对作者的算法与 FFTW软件包中的相应算法进行了对比实验 ,结果表明 ,采用该文的算法可节省计算时间约 31.7% . The Fourier transform arises in many fields of science, like signal processing, image processing, bioinformatics, computational physics and applied mathematics, etc. The most popular algorithm for computing a Fourier transform is the fast Fourier transform (FFT) algorithm. For implementation of FFT algorithms, one can create an array to store the kernel of the Fourier transform namely the so called twiddle factors, and this array is called look up table. In this paper, we recommend a bit reversed order (BRO) look up table of the twiddle factors for implementing of FFT algorithms with size of entry data N=2 n. This BRO look up table of twiddle factors is extendible, that is, it does not depend on the size of the data sequence as far as lower sizes are concerned and is easily extendible to larger sizes. The most four important twiddle factors 1, -i, (1-i)/2, and -(1+i)/2 are just located in the first four components of the BRO look up table of twiddle factors. In this paper, we also discuss some FFT algorithms with this BRO look up table of twiddle factors. Based on a classical FFT algorithm, we derive a new radix 4 based FFT algorithm and develop some programs. Experimental comparisons have been done between our new FFT algorithm and FFTW (Fastest Fourier Transform in the West) software package which is the most popular package about FFT computations. And the numerical results indicate that our new FFT algorithm and its related programs are effective. As an example for the application of our new FFT scheme, we consider the analyses of similarity of protein sequences that need a large number of FFT computations. The results show that the elapsed time of the program with our FFT scheme can be cut down by 31.7% from that of the program with the FFTW software package.
出处 《计算机学报》 EI CSCD 北大核心 2002年第4期392-396,共5页 Chinese Journal of Computers
基金 国家"八六三"高技术研究发展计划资助(863 -3 0 6-ZD-0 1-8) 国家自然科学基金项目 (60 0 73 0 44 )资助
关键词 快速FOURIER变换 旋转因子 FFTW软件包 FFT算法 计算机 fast Fourier transform, twiddle factors, FFTW software package
  • 相关文献

参考文献1

  • 1蒋增荣 曾永泓.快速算法[M].长沙:国防科技大学出版社,1993..

共引文献23

同被引文献13

  • 1龙惠民,吴静.基于FPGA的RISC CPU设计[J].兵工自动化,2006,25(12):86-87. 被引量:4
  • 2HENNESSYJL,PATTERSONDA.计算机体系结构:量化研究方法[M].白跃彬,译.4版.北京:电子工业出版社,2007.
  • 3LARSON A G. Cost-effective processor design with an application to fast Fourier transform computers [ C]// Proceedings of the llth A1- lerton Conference Circuits and System Theory. Urbana: [ s. n. ], 1973:546-557.
  • 4Jia L, Gao Y, Tenhunen H. Efficient VLSI implementation of radix-8 FFT algorithm[A]. Proceedings of the 1999 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing[C]. Victoria, BC, USA: IEEE,1999.468~471.
  • 5Jia Lihong,Gao Yonghong,Tenhunen H.A pipelined shared-memory architecture for FFT processors[A]. 42nd Midwest Symposium on Circuits and Systems[C].2000,(2):804~807.
  • 6Wu Wei, Chin Shu-Shin, Hong Sangjin. A coarse-grained FPGA architecture for reconfigurable baseband modulator/demodulator[A]. Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers[C]. 2002,(2):1613~1618.
  • 7Sansaloni T, Pe′rez-Pascual A, Valls J. Area-efficient FPGA-based FFT processor[J]. Electronics Letters,2003,(39):1369~1370.
  • 8Chang Yun-Nan, Parhi K K. An efficient pipelined FFT architecture[J]. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 2003,(50):322~325.
  • 9Moon Sang-Chul,Park In-Cheol.Area-efficient memory-based architecture for FFT processing[A]. Proceedings of the 2003 IEEE International Symposium on Circuits and Systems[C]. Bangkok, Thailand: IEEE,2003.101~104.
  • 10Uzun I S, Amira A, AhmedSaid A, et al. Towards a general framework for an FPGA-based FFT coprocessor[A]. Proceedings Seventh International Symposium on Signal Processing and Its Applications[C]. Paris, France:IEEE,2003.617~620.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部