期刊文献+

基于分布式对象的并行计算框架(英文) 被引量:1

A Distributed Object Based Framework for Parallel Computations
下载PDF
导出
摘要 在为工作站机群构造并行软件的过程中,计算特征和组成特征非常重要.但是,由于缺乏有效的支撑环境,当今的分布式并行计算软件系统效率低下,这在计算特征方面尤为明显.提出一个基于分布式对象的并行计算框架,目的在于保证高效的并行计算开发,提供封装和复用并行程序的机制,并保证系统的动态平衡和容错性.框架是4层模型,包括对象组层和移动对象层.实验结果证明了方案的有效性. The computational and compositional features are very important while constructing parallel software for the workstation clusters. However, lack of suitable supporting environment for parallel software development makes most existing distributed parallel software systems very weak in these two aspects, especially in the compositional feature. In this paper, a distributed object based framework for parallel computation is proposed. The goal of the framework is to achieve high efficiency for parallel computing, to construct a mechanism to encapsulate and reuse parallel programs, and to guarantee load balancing and fault tolerance. The framework is a four-layer model that includes an object-group layer and a mobile object layer. The experimental results verify the efficiency of the scheme.
出处 《软件学报》 EI CSCD 北大核心 2002年第3期342-353,共12页 Journal of Software
基金 Supported by the National High Technology Development 863 Program of China under Grant No. 863-306-ZT06-04-4 (国家863高科技发展计划)~~
关键词 分布式对象 移动对象 并行计算 工作站机群 框架 并行软件 软件开发 distributed object mobile object parallel computing workstation clusters framework
  • 相关文献

参考文献1

  • 1S. T. Tan,T. N. Wong,Y. F. Zhao,W. J. Chen. A constrained finite element method for modeling cloth deformation[J] 1999,The Visual Computer(2):90~99

同被引文献15

  • 1Dean J ,et al . Mapreduce: Simplified data processing on large clusters[J]. Osdi' ,2004, 51(1) :107 -113.
  • 2Ma Yu-tao,Ue ke-qing,Li Bing, et al. A Hybrid Set of ComplexityMetrics for Large-Scale Object-Oriented Software Systems [J]. Journalof Computer Science & Technolog,2010,25 (6) : 1184 - 1201.
  • 3White T. Hadoop : the definitive guide [J]. O ' reilly Media IncGravenstein Highway North,2012,215(11) :1 -4.
  • 4Zhao J,Zhang R ,Zhao Z ,et al. Hadoop MapReduce Frameworkto Implement Molecular Docking of Large-Scale Virtual Screening[C] ^ Asia-Pacific Conference on Services Computing. 2006IEEE,2012:350 -353.
  • 5Kwon Y S,Lee J Y ,Lee J ,et al. SAP HANA distributed in-memorydatabase system: Transaction, session, and metadata management[C] // Proceedings of the 2013 IEEE International Conferenceon Data Engineering (1CDE 2013 ) IEEE Computer Society,2013:1165 - 1173.
  • 6Garlasu D ,Sandulescu V ,Halcu,lonela,et al. A big data implementationbased on Grid computing[C] // Roedunet InternationalConference (RoEduNet) ,2013 11th IEEE,2013:1 -4.
  • 7Shani G ,Meek C ,Paek T ,et al. Searching large indexes on tinydevices : optimizing binary search with character pinning [C] AProceedings of the 14th international conference on Intelligent userinterfaces,ACM,2009 : 257 - 266.
  • 8Natarajan A , Mittal N. Fast concurrent lock-free binary searchtrees[C] // Proceedings of the 19th ACM SIGPLAN symposium onPrinciples and practice of parallel programming ACM,2014:317 -328.
  • 9Alnafie M ,Chikalov I ,Hussain S,et al. Sequential optimizationof binary search trees for multiple cost functions[J] A Proceedingsof the Seventeenth Computing: The Australasian Theory Symposium-Australian Computer Society,Inc. ,2011,119:41 -44.
  • 10覃雄派,王会举,杜小勇,王珊.大数据分析——RDBMS与MapReduce的竞争与共生[J].软件学报,2012,23(1):32-45. 被引量:386

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部