期刊文献+

基于人工神经网络的拼焊板成形极限图预测 被引量:4

Prediction of forming limit diagram for tailor welded blanks based on artificial neural network
下载PDF
导出
摘要 成形极限图(FLD)是评价金属板材成形能力的重要工具。为快速的建立拼焊板(TWB)成形极限图,建立基于人工神经网络(ANN)拼焊板FLD的预测模型。采用试验设计和有限元法获得训练样本,L-M算法对样本数据进行训练,建立了FLD预测模型并与物理试验结果对比。基于预测模型,分析了摩擦系数对拼焊板最小极限应变的影响。结果表明,基于ANN预测的拼焊板FLD与试验结果吻合,主应变的相对误差最大为8.71%。摩擦系数f对最小极限应变影响较大,f从0增大到0.12时,最小极限应变先增大后减小,并在摩擦系数f=0.06附近出现极小值。 The forming limit diagram (FLD) is a very effective tool to evaluate the formability of the sheet metal . To quickly create the FLD for tailor welded blank (TWB) ,we proposed a prediction model based on an artificial neural network .The design of experiment and finite element method were used to gain the training samples , which were trained by the Levenberg-Marquardt (L-M ) algorithm . The prediction model of FLD was built and validated using the experimental data . Furthermore , the effect of the friction coefficient on the minimum ultimate strain was analyzed by the presented prediction model . The results show the FLD by the prediction model is consistent with that from the experiment data ,and the maximum relative error between the experiments and the predictions is 8.71% . The friction coefficient has a marked effect on the limit strain of TWB . The least limit strain first increases then decreases with the increasing of the friction coefficient form 0 to 0.12 , reaching the minimal value when the friction coefficient is near 0.06 .
出处 《塑性工程学报》 CAS CSCD 北大核心 2014年第4期47-51,共5页 Journal of Plasticity Engineering
基金 河南省教育厅科学技术研究重点项目(14A460013) 河南省科技攻关计划项目(142102210130)
关键词 拼焊板 成形极限图 人工神经网络 预测模型 tailor welded blanks (TWBs) forming limit diagram artificial neural network prediction model
  • 相关文献

参考文献15

  • 1Veera Babu K, Ganesh Narayanan R, Saravana Kumar G. An expert system for predicting the deep drawing behavior of tailor welded blanks [J]. Expert Systems with Applications, 2010. 37(12): 7802-7812.
  • 2Chen W, Lin G S, Hu S J. A comparison study on the effectiveness of stepped binder and weld line clamping pins on formability improvement for tailor-welded blanks[J]. Journal of Materials Processing Technology,2008. 207(1-3) :204-210.
  • 3Chen W, Yang J, Lin Z. Application of integrated form- ability analysis in designing die-face of automobile panel drawing dies[J]. Journal of Materials Processing Technology, 2002. 121 (2-3) : 293-300.
  • 4Patel B C, Shah J, Shan H. Review on formability of tailor-welded hlanks[J]. International Journal on Theo- retical and Applied Research in Mechanical Engineer- ing, 2012. 1(1):2319-3182.
  • 5Menhaj A, Abbasi M, Sedighi M, et al. A new concept in obtaining a forming limit diagram of tailor welded blanks[J]. The Journal of Strain Analysis for Engineering Design, 2011.46(8) : 740-748.
  • 6Chan S M, Chan L C, Lee T C. Tailor-welded blanks of different thickness ratios effects on forming limit diagrams[J]. Journal of Materials Processing Technology, 2003. 132(1-3) : 95-101.
  • 7Naik B S, Ramulu P J, Naratanan R G. Application of a few necking criteria in predicting the forming limit of unwelded and tailor-welded blanks [J]. Journal of Strain Analysis for Engineering Design, 2010. 45 (2): 79-96.
  • 8Naratanan R G, Narasimhan K. Predicting the forming limit strains of tailor-welded blanks [J]. Journal of Strain Analysis for Engineering Design, 2008. 43 (7): 551-563.
  • 9Khafria M A, Mahmudi R. Predicting of plastic instability and forming limit diagrams [J]. International Journal of Mechanical Sciences, 2004.46(9) :1289-1306.
  • 10Korouyeh R S, Naeini H M, Liaghat G. Forming limit diagram prediction of tailor-welded blank using experi- mental and numerical methods[J]. Journal of Materials Engineering and Performance, 2012. 21 (10) : 2053-2061.

二级参考文献13

  • 1Panda S K, Kumar D R. Improvement in formability of tailor welded blanks by application of counter pressure in biaxial stretch forming [J]. Journal of Materials Processing Tech- nology, 2008, 204 (1 - 3): 70- 79.
  • 2Kinsey B L, Cao J. An analytical model for tailor welded blank forming [J]. Journal of Manufacturing Science And en- gineering, 2003, 125 (2): 344 - 351.
  • 3Moreira L P, Ferron G, Ferran G. Experimental and numeri- cal analysis of the cup drawing test for orthotropic metal sheets [J]. Journal of Materials Processing Technology, 2000, 108 (1): 78-86.
  • 4Panda S K, Ravi K D. Experimental and numerical studies on the forming behavior of tailor welded steel sheets in biaxial stretch forming [J] Materials : Design, 2010, 31 (3).. 1365 - 1383.
  • 5Gaied S, Roelandt J, Pinard F, et al. Experimental and numerical assessment of tailor-welded blanks formability [J]. Journal of Ma- terials Processing Technology, 2009, 209 (1): 387-395.
  • 6Lee W, Chung K, Kim D, et al. Experimental and numerical study on formability of friction stir welded TWB sheets based on hemispherical dome stretch tests []]. International Jour- nal of Plasticity, 2009, 25 (9) : 1626 - 1629.
  • 7Natal Jrm, Roque A P, Valente Raf, et al. Study of hydro-formed tailor-welded tubular parts with dissimilar thickness [J]. Journal of Materials Processing Technology, 2007, 184 (1- 3): 363-371.
  • 8Bhagwan A V, KridliI G T, Friedman P A. Formability im- provement in aluminum tailor-welded blanks via material corn binations [J]. Journal of Manufacturing Processes, 2004, 6 (2) .. 134 - 140.
  • 9Narayanan R G, Narasimhan K. Influence of the weld condi- tions on the forming-limit strains of tailor-welded blanks [J]. Journal of Strain Analysis for Engineering design, 2008, 43 (4) : 217 - 227.
  • 10Chandramohan R G, Ravindra R P, Janardhan R T A. Finite element analysis of the effect of coefficient of friction on the drawability[J] Tribology International, 2010, 43 (5- 6): 1132 - 1137.

同被引文献28

  • 1杜继涛,齐从谦.连续变截面辊轧板及其应用关键[J].汽车技术,2005(9):33-35. 被引量:11
  • 2王莉.Al-Mg合金的组织及力学性能[J].轻合金加工技术,2005,33(11):46-47. 被引量:12
  • 3赵欣,张延松,陈关龙,张小云.基于神经网络优化的车身镀锌板点焊性能预测[J].焊接学报,2006,27(12):77-80. 被引量:5
  • 4Miles M P, Nelson T W, Decker B J. Formability and strength of friction-stir-welded aluminum sheets EJ~. Metallurgical and Materials Transactions A, 2004. 35 (11) : 3461-3468.
  • 5Sato Y S, Sugiura Y, Shoji Y, et al. Post-weld form- ability of friction stir welded A1 alloy 5052EJ~. Materi- als Science and Engineering: A, 2004. 369(1):138-143.
  • 6Hirata T, Oguri T, Hagino H, et al. Influence of fric- tion stir welding parameters on grain size and form- ability in 5083 aluminum alloy[J~. Materials Science and Engineering: A, 2007. 456(1): 344-349.
  • 7Abdullah K, Wild P M, Jeswiet J J, et al. Tensile tes- ting for weld deformation properties in similar gage tai- lor welded blanks using the rule of mixtures[J]. Jour- nal of Materials Processing Technology, 2001. 112(1) : 91-97.
  • 8ASTM Committee on Standards. ASTM El12-2013: Standard test methods for determining average grain sizeES]. 2013, West Conshohocken: ASTM internation- al.
  • 9Lin C Y, Lui T S, Chen L H, et al. Hall-Petch tensile yield stress and grain size relation of A1-5Mg-0. 5 Mn alloy in friction-stir-processed and post-thermal-ex- posed conditionsI-J]. Materials Transactions, 2014. 55 (2) : 357-362.
  • 10施志刚,王宏雁.变截面薄板技术在车身轻量化上的应用[J].上海汽车,2008(8):36-39. 被引量:16

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部