摘要
为了提高光滑支持向量机的分类性能,给出一种具有更强逼近正号函数能力的指数光滑函数,并利用光滑技术克服支持向量机模型的不可微性,得到指数光滑支持向量分类机(ESSVM)。通过理论分析,利用数学方法证明了指数光滑支持向量分类机的收敛性。数值实验表明,指数光滑支持向量机比多项式光滑支持向量机在分类性能上更有优势。
In order to improve smooth support vector machine classified performance,exponential smoothing function is introduced.The ability of exponential smoothing function to approximate plus function is stronger than those of existing smooth functions.Smooth technology is used to o-vercome the non-differentiable of support vector machine model and an Exponential Smooth Sup-port Vector Machine (ESSVM)is obtained by using the new smooth function.Theoretical and rigorous mathematical analyses are given to prove the convergence of Exponential Smooth Sup-port Vector Machine.Numerical experiments show that the Exponential smooth support vector machine has advantage on the classification performance than polynomial smooth support vector machine.
出处
《西安邮电大学学报》
2014年第4期9-14,共6页
Journal of Xi’an University of Posts and Telecommunications
基金
国家自然科学基金资助项目(61100165
61100231)
陕西省自然科学基金资助项目(2012JQ8044
2010JQ8004)
陕西省教育厅科研计划基金资助项目(2013JK1096)
关键词
光滑支持向量机
支持向量机
指数光滑函数
BFGS算法
smooth support vector machine
support vector machine
exponential smooth func-tion
BFGS algorithm