期刊文献+

指数光滑支持向量分类机 被引量:5

Exponential smooth support vector machines
下载PDF
导出
摘要 为了提高光滑支持向量机的分类性能,给出一种具有更强逼近正号函数能力的指数光滑函数,并利用光滑技术克服支持向量机模型的不可微性,得到指数光滑支持向量分类机(ESSVM)。通过理论分析,利用数学方法证明了指数光滑支持向量分类机的收敛性。数值实验表明,指数光滑支持向量机比多项式光滑支持向量机在分类性能上更有优势。 In order to improve smooth support vector machine classified performance,exponential smoothing function is introduced.The ability of exponential smoothing function to approximate plus function is stronger than those of existing smooth functions.Smooth technology is used to o-vercome the non-differentiable of support vector machine model and an Exponential Smooth Sup-port Vector Machine (ESSVM)is obtained by using the new smooth function.Theoretical and rigorous mathematical analyses are given to prove the convergence of Exponential Smooth Sup-port Vector Machine.Numerical experiments show that the Exponential smooth support vector machine has advantage on the classification performance than polynomial smooth support vector machine.
出处 《西安邮电大学学报》 2014年第4期9-14,共6页 Journal of Xi’an University of Posts and Telecommunications
基金 国家自然科学基金资助项目(61100165 61100231) 陕西省自然科学基金资助项目(2012JQ8044 2010JQ8004) 陕西省教育厅科研计划基金资助项目(2013JK1096)
关键词 光滑支持向量机 支持向量机 指数光滑函数 BFGS算法 smooth support vector machine support vector machine exponential smooth func-tion BFGS algorithm
  • 相关文献

参考文献5

二级参考文献22

  • 1章云锋,王景成,史元浩.基于偏最小二乘支持向量机的燃煤电站锅炉效率模型[J].化工自动化及仪表,2012,39(11):1432-1436. 被引量:6
  • 2袁玉波,严杰,徐成贤.多项式光滑的支撑向量机[J].计算机学报,2005,28(1):9-17. 被引量:81
  • 3熊金志,胡金莲,袁华强,胡天明,李广明.一类光滑支持向量机新函数的研究[J].电子学报,2007,35(2):366-370. 被引量:42
  • 4熊金志,李广明,高晓雷,牛熠.一阶多项式光滑的支持向量分类机的一般模型[J].计算机工程与应用,2007,43(10):76-78. 被引量:5
  • 5Lee Y J,Mangasarian O L.SSVM:a smooth support vector machine for classification[J].Computational Optimization and Applications,2001, 22( 1):5-21.
  • 6Chen Chun-hui,Mangasarian O L.A class of smoothing functions for nonlinear and mixed complementarity problems[J].Computational Optimization and Application, 1996,5 : 97-138.
  • 7Mangasarian O L,Musicant D R.Lagranigian support vector machines[J].Jurnal of Machine Learning Research,2001,22( 1 ): 161-177.
  • 8Fung G,Mangasarian O L.Proximal support vector machine classifiers[C]//Proceedings of the First International Conference on Knowledge Discovery and Data Mining,San Francisco ,2001:77-86.
  • 9Xueying Zhang, Jing Bai, Wuzhou Liang. The Speech Recognition System Based On Bark Wavelet MFCC, ICSP' 06, 8th International Conference on Signal Processing. November 16-20, 2006, Guilin, China.
  • 10Vapnik V., The Nature of Statistical Learning Theory [M]. New York: Springer- Verlag, 1995.

共引文献111

同被引文献39

  • 1袁玉波,严杰,徐成贤.多项式光滑的支撑向量机[J].计算机学报,2005,28(1):9-17. 被引量:81
  • 2戴冬雪,王祁,阮永顺,王晓超.基于混沌思想的粒子群优化算法及其应用[J].华中科技大学学报(自然科学版),2005,33(10):53-55. 被引量:31
  • 3潘文超.果蝇最佳化演算法[M].台北:沧海书局,2011:10-12.
  • 4VAPNIK V.统计学习理论[M].New York:John Wiley&Sons,1998.
  • 5Pan W T.A new fruit fly optimization algorithm:Taking the financial distress model as an example[J].Knowledge-Based Systems,2012(26):69-74.
  • 6Bai Jing, Yang Lihong, Zhang Xueying. Parameter optimization and application of support vector machine based in parallel artificial fish swarm algorithm[J]. Journal of Software, 2013, 8(3): 673-679.
  • 7Strack R, Kecman V, Stack B,et al: Sphere Supportvector machine for large classification tasks[J]. Neu- rocomputing , 2013(101): 59-67.
  • 8Joachims T. Transductive inference for text classifica- tion using support vector machines[C]//International Conference on Machine Learning. California: Morgan Kaufmann, 1999 : 200-209.
  • 9Chapelle O, Zien A. Semi-supervised classification by low density separation[C]//Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics. Barbados: the Society for Artificial Intelli- gence and Statistics,2005: 57-64.
  • 10Bennett K, Demiriz A. Semi-supervised support vector machines[C]//Advances in Neural Information Pro- cessing Systems. MA Cambridge: MIT press, 1998: 368-374.

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部