摘要
传统的分类算法大多假定用来学习的数据集是平衡的,但实际应用中真正面临的数据集往往是非平衡数据。针对非平衡数据,利用传统的分类方法往往不能获得良好的性能。文章提出了一种新的基于聚类的非平衡分类算法,通过聚类生成多个聚类体,在每个聚类体中选取一定数量的数据作为训练样本,有效地处理了样例数据的不平衡问题,在相关数据集上的实验验证了本方法的有效性。
出处
《荆楚理工学院学报》
2014年第2期45-48,共4页
Journal of Jingchu University of Technology