期刊文献+

温度及水分状态对美国红松弯曲弹性模量的影响 被引量:5

The influence of temperature and moisture contents on modulus of elasticity of Pinus koraicnsis wood
下载PDF
导出
摘要 应用温度控制系统,对美国红松小试样规格材进行测试,检验木材温度及水分状态对木材弯曲弹性模量的影响。结果表明:温度对木材的抗弯性能具有显著影响,随着温度的升高,木材的抗弯性能逐渐减弱;相同承载条件下,含水率越高,冻结木材的抗弯曲性能越强。对于纤维饱和材,冰点以下其弹性模量随着温度的降低而迅速增加,在冰点以上则增加缓慢;对于非纤维饱和材,其弹性模量受温度影响变化幅度在冰点两侧区别不明显。冻结木材弹性模量相对于常温(20℃)情况下(相对弹性模量)受温度和含水率变化的影响十分显著,而非冻结木材的相对弹性模量对温度变化均表现不敏感。通过建立的相对弹性模量-温度试验模型,能较好地预测不同温度及含水率下的木材弯曲弹性模量相对于常温的变化幅度。该研究为不同温度条件下尤其是低温时的木材弹性模量测量结果修正提供了试验依据。 Tests were made in a temperature-controlled environment to investigate the effects of temperature and moisture state on the modulus of elasticity ( MOE ) of Pinus koraicnsis wood. The results showed that the temperature had a significant influence on the MOE of wood, which decreased with temperature rising. Under the same load, frozen wood showed higher stiffness as the moisture content (MC) increased. For wood over fiber saturation point (FSP), the MOE rose up rapidly with temperature decreasing after the temperature fell below the freezing point while above that point, the increase wilh decreasing of temperature was much slow. When the moisture contents were below FSP, the influence of temperature on MOE change did not exert significant difference at both sides of the freezing point. The relative MOE of frozen wood was significantly affected by both temperature and MC while the relative MOE of non-frozen wood was not sensitive to changes in either temperature or MC. By an experimental model established in this paper, the relative MOE of wood at different temperatures and moisture contents can be better predicted. The results of this study can be used to adjust the data of MOE testing of wood in low temperature conditions.
出处 《林业科技开发》 北大核心 2014年第4期38-42,共5页 China Forestry Science and Technology
基金 中央高校青年教师资助创新项目(编号:DL12BB31)
关键词 美国红松 木材温度 含水率 水分状态 弹性模量 Pinus koraicnsis wood temperature moisture content moisture state modulus of elasticity
  • 相关文献

参考文献13

  • 1Comben A J . The effect of low temperature on the strength and elastic properties of timber [ J ]. Journal of the Institute of Wood Science, 1964,13:44-55.
  • 2Fridley J K, R C Tang, Soltis L A. Hygrothermal effects on mechanical properties of lumber [ J ]. Journal of Structural Engineering,1992,118(2) :567-581.
  • 3Green D W, Evans J W. The immediate effect of temperature on the modulus of elasticity of green and dry lumber [ J ]. Wood and Fiber Science ,2008,40( 3 ) :374-383.
  • 4Mishiro A, Asano I. Mechanical properties of wood at low temperature: Effect of moisture content and temperature on bending properties of wood I. Moisture content below the fiber saturation point [ J ]. Mokuzai Gakkaishi. , 1984,30 ( 3 ) :207 -213.
  • 5Mishiro A, Asano I. Mechanical properties of wood at low temperature: Effect of moisture content and temperature on bending properties of wood II. Moisture content beyond the fiber saturation point[J]. Mokuzai Gakkaishi,1984,30(4) :277-286.
  • 6DeGeer D, L Bach. Machine stress grading of lumber at low temperatures[ R]. Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta. Canada-Alberta Partnership Agreement in Forestry Report 127. 1995.
  • 7Gao S, Wang X, Wang L, et al. Effect of temperature on acoustic evaluation of standing trees and logs: Part 1-Laboratory investigation [J]. Wood and Fiber Science,2012,44(3) :286-297.
  • 8Gao S, Wang X, Wang L, et al. Effect of temperature on acoustic evaluation of standing trees and logs: Part 2-Field investigation [ J ]. Wood and Fiber Science ,2013,45 ( 1 ) : 15-25.
  • 9ASTM D-143. Standard method of testing small clear specimens of timber[M]. American Society for Testing and Materials,USA,2006.
  • 10ASTM. Standard test methods for direct moisture content measurement of wood and wood-base materials. D4442-07 [ M ]. American Society for Testing and Materials, West Conshohocken,PA,2007.

二级参考文献15

  • 1张厚江.城市树木生长质量的检测[J].林业科学,2005,41(6):198-200. 被引量:5
  • 2Bachle H, Walker J. 2006. The influence of temperature on the velocity of sound in green pine wood. European Journal of Wood and Wood Products, 64 (5) : 429 - 430.
  • 3Lindstrom H, Harris P, Nakada R. 2002. Methods for measuring stiffness of young trees. European Journal of Wood and Wood Products, 60(3) : 165 - 174.
  • 4Karenlampi P, Tynjala P, StrUm P. 2005. Phase transformations of wood cell wall water. Journal of Wood Science, 51 (1) : 118 -123.
  • 5Nanami N, Nakamura N, Arima T, et al. 1993. Measuring the properties of standing trees with stress waves IIL Evaluating the properties of standing trees for some forest stands. Mokuzai Gakkaishi, 39(8): 903-909.
  • 6Sandoz J L. 1993. Moisture content and temperature effect on uhrasonic timber grading. Wood Science and Technology, 27 (5) : 373 - 380.
  • 7Sandoz J L. 1999. Standing tree assessment using aeusto-ultrasonic. ISHS Acta Hort, 496:269 -278.
  • 8Wang X P. 1999. Stress wave-based nondestructive evaluation (NDE) methods for wood quality of standing trees. A Doctoral Dissertation of Michigan Technological University.
  • 9Weise U, Maloney T, Paulapuro H, 1996. Quantification of water in different states of interaction with wood pulp fibres. Cellulose, 3(1): 189 -202.
  • 10Sohlberg MM, Raskin SA.Principles of generalization applied to attention and memory interventions [J]. Journal of Head Trauma Rehabilitation, 1996,11:65-78.

共引文献11

同被引文献56

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部