期刊文献+

球铰接杆式支撑臂展开过程中横向振动分析 被引量:5

Analysis of Transverse Vibration of an ADAM-Type Mast in Deployment Process
下载PDF
导出
摘要 针对展开过程中球铰接杆式支撑臂时变构型的横向振动问题,推导了支撑臂等效连续体模型的各向等效刚度,基于Hamilton原理推导了支撑臂展开过程的控制方程,采用加权余量法将偏微分控制方程转化为常微分方程,利用Runge-Kutta法对方程进行了数值求解。计算结果表明:在收拢过程中,支撑臂末端的横向振幅越来越小,收拢过程是安全可靠的;而在展开过程中,末端的横向振幅随展开进程而增加,且振幅随末端负载质量增加而增加;若不考虑锁定冲击,展开速度对支撑臂横向振动的振幅影响可忽略,若考虑锁定带来的周期性冲击时,支撑臂的横向振幅将显著增大。为减小支撑臂的横向振动,必须对支撑臂展开速度加以限制。研究结果为航天器支撑臂在轨展开的控制提供了参考。 To solve the transverse vibration problem of the time-varying configuration of the ADAM-type mast in deploying process, the stiffness of ADAM-type mast is deduced on the basis of the equivalent continuum model, and then the governing equations of transverse vibration during deploying process are yielded based on Hamilton principle. Utilizing the weighted residual method, the partial differential government equations are transformed into ordinary differential equations, and the equations are solved numerically by using Runge-Kutta method. The calculational results show that transverse amplitude of the mast end decreases in retracting process. It means that retraction process is reliable and safe. While in deploying process, the transverse amplitude of the mast end increases with increase of deployment length and tip load of the mast. Effect of deploying velocity on the amplitude could be ignored if lock impact isn' t taken into account. If periodic lock impact is considered, the amplitude will increase obviously, and the deploying velocity should be limited to decrease the transverse vibration. The conclusions could be applied in the control of on-orbit deployment of the ADAM-type mast.
出处 《宇航学报》 EI CAS CSCD 北大核心 2014年第7期753-761,共9页 Journal of Astronautics
关键词 球铰接杆式支撑臂 等效连续体模型 展开 时变系统 动力学 ADAM-type mast Substitute continuum model Deployment Time-varying system Dynamics
  • 相关文献

参考文献11

  • 1Hasselnmn T K, Anderson M C. Development of a large amplitude 3D microgravity suspension system [ C ]. 38thAIAA/ASME/ASCE/ AHS /ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, CA, 1997.
  • 2Wang L H, Hu Z D, Zhong Z, et al. Dynamic analysis of an axially translating visco-elastic beam with an arbitrarity varying length[J]. Acta Mech, 2010, 214:225 -244.
  • 3Amos A K, Qu B. The dynamic equations of motion for a deploying telescopic beam [ C 1. 34th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and AI&A/ASME Adaptive Structures Forum, La Jolla, CA, 1993.
  • 4Zhu W D, Ni J, Huang J. Active control of translating media with arbitrarily varying length [ J ]. Journal of Vibration and Acoustics, 2001, 123:347-356.
  • 5Fung R F, Lu P Y, Tseng C C. Non-Linearly dynamic modeling of an axially moving beam with a tip mass[J]. Journal of Sound and Vibration,1998, 218(4) : 559 -571.
  • 6邓子辰,郑焕军,赵玉立,钟万勰.基于精细积分法的伸展悬臂结构动态特征的计算[J].宇航学报,2001,22(6):110-113. 被引量:8
  • 7马凯,程刚,彭慧莲,丁锋.刚柔耦合状态下索杆式伸展臂多体动力学研究[J].航天器工程,2011,20(3):70-74. 被引量:2
  • 8Noor A. Continuum modeling for repetitive lattice structures [ J ]. Appl Mech Rev, 1988, 41 (7) : 285 -296.
  • 9Burgardt B, Cartraud P. Continuum modeling of beamlike lattice trusses using averaging methods [ J ]. Computers and Stuctures, 1999, 73 : 267 -279.
  • 10黎彪,刘志全,程刚,丁锋.球铰接杆式支撑臂构型参数分析[J].中国空间科学技术,2012,32(2):29-34. 被引量:4

二级参考文献23

共引文献30

同被引文献37

  • 1SIDWELL, VINCE. Stiffening of the ACES deployable space boom [R]. NASA-95N26307, 1995.
  • 2ADAMS L R. Design, development and fabrication of a deployable retractable truss beam model for large space structures application [R]. NASA-CR-178287, 1987.
  • 3YUKI MICHII, ART PALISOC, BILLY DERBES, et al. Truss beam with tendon diagonals-mechanics and designs [C]. 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Rhode Island, Newport, 2006.
  • 4LIU C S, ZHANG K, YANG R. The FEM analysis and approximate model for cylindrical joints with clearances [J]. Mechanism and Machine Theory, 2007, 42: 183-197.
  • 5Qiu Zhicheng. Adaptive nonlinear vibration control of aCartesian flexible manipulator driven by a ballscrewmechanism [J]. Mechanical Systems and Signal Processing,2012,30:248-266.
  • 6Wang Liang,Chen Huaihai,He Xudong. Active H∞control of the vibration of an axially moving cantileverbeam by magnetic force [J]. Mechanical Systems andSignal Processing,2011,25(8):2863-2878.
  • 7Hu Qinglei. Sliding mode attitude control with L2-gainperformance and vibration reduction of flexible spacecraftwith actuator dynamics [J]. Acta Astronautica,2010,67(5):572-583.
  • 8Dong Liang,Tang Wen Cheng. Adaptive backsteppingsliding mode control of flexible ball screw drives withtime-varying parametric uncertainties and disturbances[J]. ISA Transactions,2014,53(1):110-115.
  • 9Ouyang H,Richiedei D,Trevisani A. Pole assignmentfor control of flexible link mechanisms [J]. Journal ofSound and Vibration,2013,332(12):2884-2899.
  • 10Shan Jinjun,Liu Hongtao,Sun Dong. Slewing andvibration control of a single-link flexible manipulator bypositive position feedback(PPF)[J]. Mechatronics,2005,15(4):487-503.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部