期刊文献+

基于高斯和均方根容积卡尔曼滤波的姿态角辅助目标跟踪算法 被引量:6

Pose Angle Aided Target Tracking Algorithm Based on Gaussian Sum Square-root Cubature Kalman Filter
下载PDF
导出
摘要 根据目标2维运动速度与姿态角的关系,该文提出一种姿态角辅助目标跟踪算法。在目标运动学基础上建立状态向量中包含姿态角的跟踪模型,实现姿态角对目标跟踪的辅助;针对基于模板匹配姿态角量测的噪声为非高斯情况,将均方根容积卡尔曼滤波引入到高斯和滤波框架下,提出新的高斯和均方根容积卡尔曼滤波算法,提高非线性非高斯处理能力,同时结合目标运动中姿态角的变化规律,建立姿态角分量不同的跟踪模型,通过模型切换实现机动姿态角的滤波。算法对姿态角量测进行滤波,同时实现了姿态角信息与位置信息的有效融合。仿真结果验证了该算法的有效性和正确性。 Based on the relationship between the velocities of 2D motion and the pose angle, a pose angle aided target tracking algorithm is proposed. In terms of target kinematics, the tracking models, in which the state vector includes pose information, are constructed to realize the aiding for target tracking. In order to improve the filtering ability of nonlinear non-Gaussian systems, the Gaussian Sum Square-root Cubature Kalman Filter (GSSCKF) algorithm is proposed by introducing Square-root Cubature Kalman Filter (SCKF) into the framework of Gaussian Sum Filter (GSF), due to the non-Gaussian pose measurement noise obtained by model matching. Moreover, tracking models with different pose components are established by exploiting the pose variation law in targets motion, and maneuvering pose is estimated by model switching. The proposed algorithm is able not only to filter the pose measurement, but also to fuse the pose information and the position information effectively. The simulation results show the validity and the correctnesss of the proposed algorithm.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第7期1579-1584,共6页 Journal of Electronics & Information Technology
关键词 目标跟踪 信息融合 非线性非高斯滤波 均方根容积卡尔曼滤波 模型切换 Target tracking Information fusion Nonlinear non-Gaussian filter Square-root cubature Kalman filter Model switching
  • 相关文献

参考文献20

二级参考文献117

共引文献70

同被引文献50

  • 1辛云宏,王保平,杨万海.基于序贯重要采样算法的被动单站机动目标跟踪[J].西安电子科技大学学报,2005,32(5):820-824. 被引量:4
  • 2Pomerleau D.RALPH:Rapidly adapting lateral position handler[A ].Proc.of Intelligent Vehicles′ 95Symposium.,IEEE[C].1995,6-511.
  • 3Hillel A B,Lerner R,Levi D,et al.Recent progress in road and la ne detection:a survey[J].Machine Vision and Applications,2014,25(3):727-745.
  • 4WAMG Jing-yu,DUAN Jian-min.Lane detection algorithm using van ishing point[A].Proc.of Machine Learning and Cybernetics (ICMLC)[C].2013,5-740.
  • 5Donald J B M,Franz J,Shorten R.Application of the hou-gh transfo rm to lane detection in motorway driving scenarios[A].Proc.of the Irish Signals and Systems Conf[C].2001,340-345.
  • 6Lee J W.A machine vision system for lane departure detection[ J].Computer Vision and Image Understanding,2002,86(1):52-78.
  • 7Wang Y,Teoh E,Shen D.Lane detection and tracking using B-snake [J].Image and Vision Computing,2004,22(4):269-280.
  • 8ZHOU Sheng-yan,JIANG Yan-hua.A novel lane dete ction based on geometrical model and Gabor filter[A].Intelligent Vehicles Symp osium,IEEE[C].2010,59-64.
  • 9Mechat N.Lane detection and tracking by monocula r vision system in road vehicle[A].Proc.of 20125th International Congress on Image and Signal Processing,IEEE[C].2012,1276-1282.
  • 10Zhang Y Q,Ding Y,Xiao J S,et al.Visibility enh ancement using an image filtering approach[J].EURASIP Journal on Advances in Signal Processing,2012,(1):1-6.

引证文献6

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部