摘要
系统地分析了多种功能材料掺杂改性的实验结果,建立了薄膜的某一物理性能与晶体结构、制备方法和掺杂剂含量之间的联系,给出了一个能够拟合实验曲线的具有确定物理意义的抛物线方程.该方程的极值点确定了最佳掺杂含量与晶体结构和制备方法之间的定量关系,进而得到了一个掺杂最佳含量的表达式.应用此表达式定量计算了多种功能材料的最佳掺杂含量.定量计算的结果与实验数据相符合.
Analysis of experimental functional materials with various doping levels is presented. The relationship among the physical property, crystal structure, preparation method and doping content was established to be a parabola equation. The extreme value of this equation determines the optimum doping content. The optimum doping content of aluminum-doped zinc oxide films, tin-doped indium oxide films, antimony-doped stannic oxide films, potassium-doped barium-titanate nanocrystalline films, yttrium-doped lead- (zirconate) titanate films, manganese-doped zinc sulfide nanocrystalline films, molybdenum-doped tungsten oxide electrochromic films, tin-doped (-ferric oxide nanocrystalline films, silicon-doped boron carbide films, magnesiumdoped lithium niobate crystals and etc., etermines by this quantitative method agree with the experimental results.
出处
《河北工业大学学报》
CAS
2002年第2期79-82,共4页
Journal of Hebei University of Technology
关键词
功能材料
晶体结构
制备方法
最佳掺杂含量
理论计算
薄膜
functional materials
crystal structure
preparation method
optimum doping content
theoretical calculation