摘要
根据常压塔的原油进料及产品多变 ,提出采用多神经网络结构建立侧线产品质量软测量模型。利用基于马氏距离的数据分类技术 ,对输入样本分类。利用产品质量化验分析值 ,对软测量模型进行校正。实际应用表明多神经网络结构的软测量精度高。
The paper stated that the soft measurement model for the quality of sideline products is established by using multiple neural networks structure to meet variable crude feedings and products of normal pressure tower. By adopting data sorting technology based on Mars distance the input samples are sorted. The soft measurement model is corrected by analyzing values of chemical examination on products. The result of practical application shows the accuracy of soft measurement based on multiple neural network structure is high.
出处
《自动化仪表》
CAS
北大核心
2002年第3期5-8,共4页
Process Automation Instrumentation
关键词
软测量
产品质量
侧线产品
常压塔
多神经网络
马氏距离
数据分类
炼油
Software measurement Quality of product Sideline product Normal pressure tower Multiple neural networks Mars distance Data sorting