期刊文献+

无杂质空位扩散法造成InGaAsP/InP多量子阱结构带隙蓝移规律的研究 被引量:1

Band Gap Blue Shift of InGaAsP/InP MQWs By Impurity-Free Vacancy Disordering
下载PDF
导出
摘要 采用光荧光谱 (PL)和光调制反射谱 (PR)的方法 ,研究了由Si3 N4 、SiO2 电介质盖层引起的无杂质空位(IFVD)诱导的InGaAsP四元化合物半导体多量子阱 (MQWs)结构的带隙蓝移。实验中Si3 N4 、SiO2 作为电介质盖层 ,用来产生空位 ,再经过快速热退火处理 (RTA)。实验结果表明 :多量子阱结构带隙蓝移和退火温度、复合盖层的组合有关。带隙蓝移随退火温度的升高而加大。InP、Si3 N4 复合盖层产生的带隙蓝移量大于InP、SiO2 复合盖层。而InGaAs、SiO2 复合盖层产生的带隙蓝移量则大于InGaAs、Si3 N4 复合盖层。同时 ,光调制反射谱的测试结果与光荧光测试的结果基本一致 ,因此 。 The band gap tuning of multiple quantum wells (MQWs) structure in the compound semiconductor is becoming an important tool in fabricating optoelectronic devices.Especially,phonic integrated devices based on InGaAsP multiple quantum wells structure are particular imporance because of its dramatic increase in demand for long wavelength optical communication.To integrate several optoelectronic devices on a single wafer,we must divide area with different optolectronic properties such as refractive index and absorption wavelength.Selective regrowth and selective area epitaxy are two possible techniques that can be used for this purpose.However,there is considerable interesting in post growth quantum well intermixing (QWI) technique which can be used to modify the geometry and composition of MQWs in selected regions. There are several quantum well intermixing (QWI) techniques that provide the localized formation of band gap shifted area.Among these QWI techniques,impurity free vacancy disordering (IFVD)is believed to be a promising technique without free carrier absorption and damage of crystal lattice. In this paper, band gap blue shift of InGaAsP/InP multiple quantum wells by IFVD was investigated using photoluminescence(PL) and photoreflectance (PR).Si 3N 4 and SiO 2 were used for the dielectric layer to create the vacancies.Then all samples were annealed by rapid thermal ananealing (RTA).The results indicate that band gap blue shift depends on the annealing temperature and time.Band gap blue shift increases with the annealing temperature and time but it tends to saturate when the annealing time attains certain extent.The SiO 2 capping was successfully used with InGaAs cladding layer to cause larger band tuning effect in the InGaAsP/InP MQWs material than Si 3N 4 used with InGaAs cladding layer.On the other hand, samples with Si 3N 4-InP cap layer combinations also show larger energy shifts than SiO 2-InP cap layer combinations.At the same time,the results of band gap blue shift measured by PR are basically consistent with the results from PL.So, photoreflectance(PR) is alternative method,which can be used to measure band gap blue shift.To our knowledge,no report was concerned with measuring band gap blue shift using PR.Furthermore,the band gap blue shift affected by cap layer combinations created a new method for IFVD investigation. Sum up,this paper first reports the results of band gap blue shift measured by PR.To obtain large energy shift,the optimal selected cap layer combination is Si 3N 4-InP or SiO 2-InGaAs.
出处 《发光学报》 EI CAS CSCD 北大核心 2002年第2期119-123,共5页 Chinese Journal of Luminescence
基金 国家自然科学基金资助项目 ( 6 9886 0 0 1)
关键词 无杂质空位诱导无序 光荧光谱 光调制反射谱 铟镓砷磷化合物 磷化铟 多量子阱结构 单片集成光电器件 impurity free vacancy disordering photoluminescence photoreflectance
  • 相关文献

参考文献10

  • 1Kotaka I, Wkita K, Okamoto M, et al. A low-drive-voltage high-quantum-well modulator/DFB laser light source [J].IEEE. Technol. Lett., 1993, 5:61-63.
  • 2Aoki M, Sano H, Suzuki M, et al. Novel structure MQW electroabsorption modulator/DFB laser integrated device fabricated by selective area MOCVD growth [J]. Electron. Lett., 1991, 27:2138-2140.
  • 3Deppe D G, Holonyak N Jr, et al. Atom diffusion and impurity induced layer disordering in Ⅲ- V quantum well semiconductor heterostructure [J]. J. Appl. Phys., 1998, 64(12) :93-113.
  • 4Melean C J, Marsh J H, et al. Layer selective disordering by photoabsorption induced thermal diffusion in InGaAs/InP based multiple quantum well structures [J]. Electron. Lett., 1992, 28: (12): 1117-1119.
  • 5Rao E V, Ossart P, et al. Enhancement of group Ⅲ atom interdiffusion by nondopant oxygen implants in In0.53Ga0.47As/In0.52Al0.48As multiquantum wells [J]. Appl. Phys. Lett., 1990, 57(21):2190-2195.
  • 6Papperto S A, Xia W, et al. Simultaneous disordering and isolation induced by ion mixing in InGaAs/InP superlattice structures [J]. Appl. Phys., 1992, 72(4):1306-1311.
  • 7Deep D G, Guido J, et al. Stripe-geometry quantum well heterostructure AlGaAs-GaAs laser defined defect diffusion [J]. Appl. Phys. Lett., 1986, 49:510-512.
  • 8Burkner S, Maier M, et al. Process parameter dependence of impurity-free interdiffusion in GaAs/Alx Ga1-x As and InyGa1-yAs/GaAs multiple quantum wells [J]. J. Electron. Materials, 1995, 24:805-812.
  • 9C ao N, Elenkrig B B, et al. Band-gap blue shift by impurity-free vacancy diffusion in 1.5μm strained-InGaAs/InP multiple quantum-well laser structure [J]. Appl. Phys. Lett., 1997, 70(25) :3419-3421.
  • 10Jung W P, Hyun S K, et al. Intermixing characteristics of strained-InGaAs/InGaAsP multiple quantum well structure using impurity-free vacancy diffusion [J]. Jpn. J. Appl. Phys., 1999, 38:L1303-L1305.

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部