期刊文献+

轴向激励屈曲简支梁动力特性的数值研究

Numerical Investigation on Dynamical Behaviours of A Buckled Beam Under Axial Harmonic Excitation
下载PDF
导出
摘要 利用有限差分原理 ,考虑转动惯量的影响 ,在轴向激励作用下 ,对屈曲梁的动力特性进行数值研究。用数值方法进行计算的结果与利用Galerkiin法将偏微分方程转化成常微分方程进行分析的结果基本吻合 ,证实系统中存在周期倍化、拟周期运动和混沌运动等复杂动力学行为 。 The dynamical behaviours of a simply support buckled beam under axial harmonic excitation are investigated using the direct numerical method,and the effect of rotary inertia is considered too.The governed equation of buckled beam is transformed to the nonlinear partial differential equations of physical variables such as moment,velocity and displacement.By using a stable,explicit finite difference scheme to solve the equations and the solutions is equivalent to the Galerkiin solutions.Various complex dynamical behaviours such as period doubling,quasi periodic and chaotic motion in this system are shown,and the result also demonstrated that the finite difference method is more convenient than other tradition methods for the study of buckled beams.
作者 陈宁
出处 《南京林业大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第2期44-48,共5页 Journal of Nanjing Forestry University:Natural Sciences Edition
关键词 参激屈曲梁 混沌运动 周期倍化 转动惯性 动力特性 数值研究 Parametric exciting buckled beam Nonlinear dynamics Chaotic motion Period doubling
  • 相关文献

参考文献3

二级参考文献5

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部