摘要
选择了吉林省西部潜水位埋深与盐碱化程度的空间相关系数、土壤有机质含量、潜水钠离子含量、土壤质地、人口密度和草场载畜量作为预警因子 ,采用神经网络模型进行预警。预警结果表明该区无警区占 2 0 .12 % ,轻警区面积占 2 0 .92 % ,中警区面积占 33.2 2 % ,重警区面积占 2 5 .74 %。
The coupling of GIS and ANN is used to early warning of the salinazation in west Jinlin plain. The spatial correlation coefficients, soil texture, the content of organic matter, the content of Na +, the population density and the number of livestock are selected as factors for salinzation early warning. The result shows that the non warning area covers 20.12% of the total area, the light warning area covers 20.92%, the moderate warning area covers 33.22%, the serious area covers 25.74%.
出处
《水土保持通报》
CSCD
北大核心
2002年第1期57-59,共3页
Bulletin of Soil and Water Conservation
基金
中国科学院知识创新项目 (KZCX1- 0 6- 0 2- 0 1)