期刊文献+

基于符号迁移图的互模拟验证算法 被引量:1

Bisimulation Checking Algorithms Based on Symbolic Transition Graphs
下载PDF
导出
摘要 符号迁移图是传值进程的一种直观而简洁的语义表示模型。该模型由Hennessy和Lin首先提出 ,随后又被Lin推广至带赋值的符号迁移图。本文不但定义了符号迁移图各种版本 (基 /符号 )的强操作语义和强互模拟 ,提出了相应的强互模拟算法 ,而且通过引入符号观察图和符号同余图 ,给出了其弱互模拟等价和观察同余的验证算法 ,给出并证明了τ 循环和τ 边消去定理 ,在应用任何弱互模拟和观察同余验证算法之前 ,均可利用这些定理对所给符号迁移图进行化简。 A symbolic transition graph is an intuitive and concise semantic model for value passing processes It is firstly introduced by Hennessy and Lin,and then generalized by Lin to symbolic transition graph with assignment This paper not only defines various versions of strong operational semantics and strong bisimulation for symbolic transition graphs,and proposes strong bisimulation algorithms for them,but also presents corresponding checking algorithms for weak bisimulations and observation congruence by means of symbolic observation graphs and symbolic congruence graphs Theorems ensuring the elimination of τ cycles and τ edges are given and proved,and therefore symbolic transition graphs can be simplified significantly once weak bisimulation and observation congruence are to be checked
出处 《计算机工程与科学》 CSCD 2002年第2期34-41,共8页 Computer Engineering & Science
基金 国家自然科学基金资助项目 (60 0 73 0 0 1 6993 3 0 3 0 ) 高等学校重点实验室访问学者基金资助项目
关键词 符号迁移图 互模拟验证算法 互模拟 谓词等式系 计算机 Value passing processes symbolic transition graph bisimulation observation congruence predicate equation system
  • 相关文献

参考文献14

  • 1[1]R Milner. Communication, and Concurrency[M]. Prentice-Hall,1989.
  • 2[2]G Bruns. Distrubuted System Analysis with CCS[M]. Prebtuce Hall,1996.
  • 3[3]R Clevelabd,J Parriw, B Steffen.The Concurrency Workbench:A Semantics Based Verification Tool for the Verification if Concurrent Systems[J]. ACM Trans on Programming Language and Systems, 1993,15(1) :36-72.
  • 4[4]J Godskesen, K Larsen, M Zeeberg.Tav User Manual[R]. Report R89-19, Aalborg University, 1989.
  • 5[5]B Jonsson,J Parrow. Deciding Bisimylation Equivalences for a Class of Non-Finite-State Programs[J]. Infirnation and Computation,1993, 107: 272-302.
  • 6[6]M Hennessy, H Lin. Symbolic Bisimulations [J],Theoretical Computer Science, 1995,138: 353-389.
  • 7[7]H Lin. Symbolic Transition Craph with Assignment[A].CONCLUR'96, LNCS 1119 [C]. Springer-Verlag, 1996.
  • 8[8]M Hennessy, H Lin. Proof Systems for Mesage-Passing Process Algebra [A]. CONCUR' 93, Lecture Notes in Computer Science, Vol 715 [C] .Springer-Verlag, 1993.
  • 9[9]T Bultan, R Gerber, W Pugh Symbolic Model Checking of Infinite State Systems Using Presburger Arithmetic [A]. CAV'97, LNCS 1254 [C]. Springer- Verlag, 1997.
  • 10[10]P Wolper, B Boigelot. An Autonata-Theiretic Approach to Presburger Aruthmetic Constraints [A]. Proc of Static Analysis Symp,LNCS 983 [C]. Spring - Verlag, 1995.21-32.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部