期刊文献+

发酵过程混合神经网络模型及其仿真 被引量:7

A Hybrid Neural Network Model and Simulation for Fermentation Processes
下载PDF
导出
摘要 提出了一种新型结构的发酵过程混合神经网络模型。该模型由非线性神经网络和线性神经网络两部分组成。由于非线性神经网络采用结构具有线性形式的Flat网络,两个网络能够合并为同一表达式,并具有线性形式,可采用线性最小二乘法求解网络权值。与串联结构及串并联结构混合神经网络模型相比,该模型训练方式简单,并可方便地使用在线辨识算法。 A new hybrid neural network model for fermentation processes is proposed, which combines the nonlinear network and the linear network. The nonlinear neural network is the Flat network that can be formulated as linear form. The nonlinear network is merged into a linear formula with the linear network. Thus, this formulation makes it easy to update the weight values of the network using a linear least-square method. Compared to existing models containing serial and serial-parallel hybrid neural network approaches in which more costly training is needed, the proposed model is very attractive if accuracy and easy training are critical issues.
出处 《系统仿真学报》 CAS CSCD 2002年第4期415-417,共3页 Journal of System Simulation
关键词 发酵过程 混合神经网络 模型 仿真 状态估计 非线性规划 fermentation processes neural networks model building state estimation
  • 相关文献

参考文献4

  • 1Thatipamala R, Hill G A, Rohani S. On-line state and parameter estimation and adaptive optimization of a continuous bioreactor (ethanol fermentation) using state equations [A]. American Control Conference, San Francisco, California, 1994, 1. 905-909.
  • 2Psichogios D C, Ungar L H. A hybrid neural network-first principles approach to process modeling [J]. AIChE Journal, 1992, 38(10): 1499-1511.
  • 3Thompson M L, Kramer M A. Modeling chemical processes using prior knowledge and neural networks [J]. AIChE Journal, 1994, 40(8): 1328-1340.
  • 4Chen Philip C L, Wan John Z. A rapid learning and dynamic stepwise updating algorithm for flat neural networks and the application to time-series prediction [J]. IEEE Transactions on Systems, Man and Cybernetics-Part B, 1999, 29(1): 62-72.

同被引文献62

引证文献7

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部