期刊文献+

我国股市波动的ARCH类模型分析 被引量:6

An Analysis of Stock-market Volatility in China Based on ARCH Models
下载PDF
导出
摘要 股票价格的频繁波动是股票市场最明显的特征之一。 ARCH类模型可以成功地预测金融资产收益率的方差。通过对我国股价指数的统计描述 ,表明我国金融资产收益率存在自回归条件异方差特征 ,并表现出非正态性。利用 ARCH类模型对深圳成份指数的波动进行拟合 ,结果表明 。 Frequent volatility is a feature of stock market. ARCH models are often used to forecast the variance of the benefit of financial capitals. Statistic descriptions indicate that the benefit of financial capitals in China has the characteristic of autoregressive conditional heteroskedasticity and abnormality. The ARCH models by Eviews are adopted in this paper to forecast the variance of the benefit of financial capitals. Results obtained show that the EGARCH model is a better model for frequent volatility of stock market in China.
作者 温素彬
出处 《淮海工学院学报(自然科学版)》 CAS 2002年第2期64-67,共4页 Journal of Huaihai Institute of Technology:Natural Sciences Edition
关键词 股市波动 ARCH类模型分析 ARCH模型 GARCH模型 TARCH模型 EGARCH模型 stock market volatility ARCH model GARCH model TARCH model EGARCH model
  • 相关文献

参考文献1

二级参考文献2

共引文献7

同被引文献21

  • 1徐剑刚,唐国兴.我国股票市场报酬与波动的GARCH-M模型[J].数量经济技术经济研究,1995,12(12):28-32. 被引量:32
  • 2Engle R F. Autogressive Conditional Heteroskedasticity with Estimates of the Variance of UK Inflation[J]. Econometrica, 1982.
  • 3Das G,Lin D,Mannila H,Renganathan G,Smyth P. Rule discovery from time series[A]. Fourth Annual Conference on Knowledge Discovery and Data Mining(KDD-98)[C]. AAAI Press:23~29.
  • 4李斌.[D].合肥:中国科学技术大学,2002.
  • 5HanJW KamberM.数据挖掘概念与技术[M].机械工业出版社,2001..
  • 6易丹辉.数据分析与Eviews应用[M].中国统计出版社,2005.
  • 7张世英,樊智.协整理论与波动模型[M].清华大学出版社,2004.
  • 8Engle.Autoregressive conditional heteroskedasticity with estimates of the Variance of U.K inflation[J],Econometricas,1982,50:987-1008.
  • 9Engel R F, Granger C W J.Cointegration and Error Correction: epresentation[J]. Estimation and Economerica,1987,55:251-276.
  • 10李国璋,江金荣,陈敏.协整理论与误差修正模型在实证应用中几个问题的研究[J].统计与信息论坛,2010,25(4):21-24. 被引量:14

引证文献6

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部