期刊文献+

一种基于模糊CMAC自学习模糊逻辑系统及其在控制中的应用 被引量:2

CMAC Based Self-Learning Fuzzy Logical System and Its Application to Automatic Control
下载PDF
导出
摘要 把 HCMAC(Hyperball Cerebellar Model Articulation Controller)与模糊逻辑理论有机结合起来 ,形成 FHCMAC(Fuzzy HCMAC) ,它便于从输入输出数据中提取模糊规则 ,直接用作控制器 .可以将 FHCMAC看作用基函数网络实现的模糊逻辑系统 ,兼有 HCMAC神经网络和模糊逻辑两者的优点 ,既可以较容易表达定性或模糊的经验知识 ,又具有很好的学习性能 .应用仿真实例验证了其有效性 . Combining hyperball cerebellar model articulation controller (HCMAC) with fuzzy logic theories, a fuzzy HCMAC (FHCMAC) was obtained, which can extract fuzzy rules for neurocontrol and be used as a controller directly. The controller is of powerful robustness. The FHCMAC can be regarded as a fuzzy logical system implemented by a basis neural network. It has the advantage of CMAC and fuzzy logic systems, namely, on one hand, FCMAC can express qualitative or fuzzy knowledge easily; on the other hand, it has perfect learning ability. The simulation example confirms the advantages. The presented method can be used to extract logic rules from input output data.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2002年第4期543-546,共4页 Journal of Shanghai Jiaotong University
关键词 小脑模型 模糊神经网络 FHCMAC 模糊控制 自学习 模糊逻辑系统 cerebellar model articulation controller (CMAC) self learning fuzzy neural networks fuzzy logical system
  • 相关文献

参考文献2

二级参考文献4

共引文献25

同被引文献12

  • 1ZHANGJing-yong,ZHANGLei,CAOQi-xin,JayLee.Application of Cerebellar Model Articulation Controller (CMAC) with a Modified Algorithm in Monitoring Machine Performance Degradation[J].International Journal of Plant Engineering and Management,2005,10(1):8-12. 被引量:1
  • 2刘清,沈祖诒,王柏林.基于CMAC的非线性逆滤波改善传感器的动态特性[J].控制理论与应用,2005,22(5):758-761. 被引量:4
  • 3Akal Mustafa. Forecasting Turkey's tourism revenues by ARMAX model[J]. Tourism Management, 2004, 25(10): 565-580.
  • 4Maddison David. Air pollution and hospital admissions: An ARMAX modelling approach[J]. J of Environmental Economics and Management, 2005, 49(1): 116-131.
  • 5Rahrooh Alireza, Shepard Scott. Identification of nonlinear systems using NARMAX model[J]. Nonlinear Analysis, Theory, Methods and Applications, 2009, 71(12): 1198- 1202.
  • 6Ge S S, Zhang J, Lee T H. Adaptive MNN control for a class of non-affine NARMAX systems with disturbances[J]. Systems and Control Letters, 2004, 53(1): 1-12.
  • 7Ma Cheng-qian, Yue Xi, Jiang De-sheng. Intelligent model of urban road tunnel ventilation system based on multilevel neural network[C]. Proc of the 2009 Pacific-Asia Conf on Circuits, Communications and System. Chengdu, 2009: 636-639.
  • 8Altiparmak Fulya, Dengiz Bema, Smith Alice E, A general neural network model for estimating telecommunications network reliability[J]. IEEE Trans on Reliability, 2009, 58(1): 2-9.
  • 9Liu Bo, Li Hui-guang, Wu Ti-hua. Neural network identification method applied to the nonlinear system[C]. Proc of the 2009 WRI Global Congress on Intelligent Systems. Xiamen, 2009: 120-124.
  • 10Bezdek James C. Pattern recognition with fuzzy objective function algorithms[M]. New York: Plenum, 1981.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部