期刊文献+

基于条件事件代数的常概率事件模型及应用 被引量:2

Model of Constant Probability Event Based on Conditional Event Algebra and Its Application
下载PDF
导出
摘要 基于乘积空间条件事件代数 ,介绍了一种具有严格数学表示的常概率事件的方法 ,将其应用于数据融合系统中的专家权重事件描述 ,数值融合的结果与代数融合的结果相一致 .在乘积空间条件事件代数中 ,提出了一个新的度量专家观点的布尔相似性测度 ,该测度可以有效地评定专家信息的相似性 。 A mathematics model of constant probability event in product space conditional event algebra was proposed. It is showed that the numerical based fusion and the algebraic based fusion has the consistent result by modeling the weighs of relevant contributing events given by expert as constant probability event in data fusion system. Based on the model, a novel Boolean similarity measure was presented to determine the similarity between experts opinion. A numeric example was illustrated to show the validity of the similarity measure.
作者 邓勇 施文康
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2002年第4期588-591,共4页 Journal of Shanghai Jiaotong University
关键词 常概率事件模型 乘积空间 条件事件代数 权重事件 相似性测度 product space conditional event algebra weight event constant probability event similarity measure
  • 相关文献

同被引文献52

  • 1王永成,王宏飞,杨成梧.目标属性信息相关时融合识别的实现方法[J].兵工学报,2005,26(3):338-342. 被引量:8
  • 2史建国,高晓光.离散动态贝叶斯网络的直接计算推理算法[J].系统工程与电子技术,2005,27(9):1626-1630. 被引量:36
  • 3李良群,姬红兵.基于最大熵模糊聚类的快速数据关联算法[J].西安电子科技大学学报,2006,33(2):251-256. 被引量:14
  • 4Pearl J. Fusion, propagation and structuring in belief networks[J]. Artificial Intelligence, 1986, 29 (3): 241-288.
  • 5Neapolitan R E. Learning Bayesian networks[M]. New York: Pearson Prentice Hall Upper Saddle River, 2004.
  • 6Koller D, Pfeffer A. Object-oriented Bayesian networks [C]. Proe UA197. San Francisco: Morgan Karfman, 1997: 302-313.
  • 7Langseth H, Nielsen T D. Fusion of domain knowledge with data for structural learning in object oriented domain[J]. J of Machine Learning Research, 2004, 4 (3):339-368.
  • 8Bangsφ O. Object oriented Bayesian networks [D]. Aalborg: Aalborg University, 2004.
  • 9Gyftodimos E, Flach P. Hierarchical Bayesian networks: An approach to classification and learning for structured data[C]. Proc of the Work-in-Progress Track at the 13th Int Conf on Inductive Logic Programming. Zagreb, Ruder Boskovic Institute, 2003: 25-36.
  • 10Gyftodimos E, Flach P A. Learning hierarchical Bayesian networks for human skill modelling[C]. Proc of the 2003 UK Workshop on Computational Intelligence. Bristol: University of Bristol, 2003: 55-62.

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部