期刊文献+

等权波包与一维简谐振子 被引量:3

Equal weight wave packet and one-dimensional simple harmonic oscillator
下载PDF
导出
摘要 以第n个定态波函数为中心 ,将其附近的从第 (n -N)个到 (n +N)个共 2N + 1个定态波函数以等权重1 2N + 1 叠加起来 ,就构成了所谓的等权波包 .波包上任一力学量f的平均值 f在经典极限下有严格的经典对应 .这一结果可用来考察以往用波包讨论量子力学经典极限的得失之处 .本文较系统地研究了一维简谐振子体系 ,给出了若干新结果 ,并澄清了现行教科书中若干不甚正确的说法 . By equal weight wave packet,we mean that there are 2N+1 successive stationary states,centered at the nth and ranged from the (n-N)th to (n+N)th,superimposed into it with equal weight.Recent research shows that the expectation value of a physical quantity in the wave packet in classical limit converges to the classical quantity.Since this wave packet can be treated exactly, we can use it to examine the previous results related to wave packets,such as the form of classical limit of the mean value of a quantity in the wave packet,classical correspondence of uncertainty relation,relation between classical probability density and the quantum mechanical one,etc.This paper studies aone dimensional simple harmonic oscillator,demonstrating the differences of our results from previous one.
作者 刘全慧
出处 《大学物理》 北大核心 2002年第5期13-18,共6页 College Physics
基金 国家自然科学基金资助项目 (199740 0 1) 湖南省自然科学基金资助项目
关键词 等权波包 一维简谐振子 量子力学 经典极限 波函数 quantum mechanics classical limit wave packet
  • 相关文献

参考文献13

  • 1Landau L D,Lifshitz E M.Quantum Mechanics (Non-relativistic Theory)[M].New York:Pergamon,1987.73.
  • 2Schiff L I.Quantum Mechanics [M]. 3rd ed.New York:MacGraw-Hill,1967.
  • 3Gea-Banacloche J A.Quantum Boucing Ball [J].Am J Phys,1999,67(9):776.
  • 4Liu Q H.The Classical Limit of Quantum Mechanics and the Fejér Sum of the Fourier Series Expansion of a Classical Quantity [J]. J Phys A Math Gen,1999,32(4):L57.
  • 5梁昆淼.数学物理方法论[M].北京:高等教育出版社,1989.
  • 6Hardy G H,Rogosinski W W.Fourier Series [M]. 3rded. Cambridge:Cambridge University Press,1956.
  • 7Kahane J P,Lemarie-Rieusset P G.Fourier Series and Wavelets [M].Luxemburg:Gordon and Breach,1995.
  • 8Ballentine L E.The Statistical Interpretation of Quantum Mechanics [J].Rev Mod Phys,1970,42(4):358.
  • 9Pauling L,Wilson Jr E B.Introduction to Quantum Mechanics [M].New York:MacGraw-Hill,1935.
  • 10Ballentine L E.Einstein's Interpretation of Quantum Mechanics[J],Am J Phys,1972,40(12):1 763.

同被引文献7

  • 1A梅西亚 苏汝铿 汤家镛.量子力学(第一卷)[M].北京:科学出版社,1986.27,219-223,228-233,464-468.
  • 2R埃斯伯格 R 瑞斯尼克 吴伯泽 等.量子物理学[M].北京:北京工业学院出版社,1985.106-108.
  • 3ЛД朗道 E M 栗弗西茨 严肃.量子力学(上册)[M].北京:高等教育出版社,1980.24-30,61-64,206-211.
  • 4增进言.量子力学(卷Ⅰ)[M].北京:科学出版社,1995.13-18,42-46.
  • 5LI席夫.量子力学[M].北京:人民教育出版社,1981..
  • 6PAM狄拉克 陈咸亨译.量子力学原理[M].北京:科学出版社,1965..
  • 7XU Xiu-wei,ZHANG Yong-de.Two Theorems for General n-Mode Boson Exponential Quadratic Operators[J].Chinese Physics Letters,1997,14(11):812-815. 被引量:5

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部