期刊文献+

基于ANN方法的锂离子电池放电容量预测 被引量:1

Prediction of discharge capacity of lithium ion batteries based on artificial neural network method
下载PDF
导出
摘要 锂离子电池放电容量的预测和估计是电池管理系统中一个非常重要的内容。某一个状态下锂离子电池的放电容量是放电电流、电压、温度以及过去电池充放电的历史等参数的函数。运用ANN方法即人工神经网络方法 ,可逼近任何多输入输出参数函数的性能 ,预测不同放电电流和电压下锂离子电池放电容量的大小。结果表明 ,ANN方法具有足够的精度 ,可用来预测锂离子电池的放电容量。 The prediction of discharge capacity of lithium ion batteries was one of the main tasks of battery management system.The discharge capacity of a lithium ion batteries was related with many parameters, including discharge current, voltage, temperature, and the past charge and discharge history. The ANN (artificial neural network) method, which could be used to approach nonlinear function with many input and output parameters, was used to estimate the discharge capacity of lithium ion batteries when changing the discharge current and voltage. The computed result showed the ANN method was a quite accurate algorithm, and could be used in prediction of discharge capacity of lithium ion batteries.
出处 《电池》 CAS CSCD 北大核心 2002年第2期69-71,共3页 Battery Bimonthly
关键词 ANN方法 锂离子电池 放电容量 预测 人工神经网络 discharge capacity lithium ion battery artificial neural network
  • 相关文献

参考文献6

  • 1Jossen A, Spath V, Doring H, et al. Reliable battery operation-a challenge for the battery management system [J]. J Power Sources, 1999, 84:28 3-286.
  • 2LU Ming-xian(吕鸣祥),HUANG Chang-bao(黄长保),SONG Yu-jing( 宋玉瑾). 化学电源[M]. Tianjin(天津):Tianjin University Press(天津大学出版社),1992:207.
  • 3Camp J, William O, Turner, et al. Method and apparatus for determi ning th e remaining operation time of a mobile communication unit [P]. US:6236214, 20 01.
  • 4LI Xiao-an(李孝安),ZHANG Xiao-gui(张晓贵). 神经网络与神经计算机导论[M]. Xi'an(西安):West-north Industry University Press(西北工业大学出版社),1994:34-40 .
  • 5TANGZhi-yuan(唐致远) XUEJian-jun(薛建军) LIJian-gang(李建刚) etal.锂离电池嵌入电极的放电过程机理[J].化学通报网络版,2001,4:0104-0104.
  • 6唐致远,薛建军,刘春燕,庄新国.锂离子在石墨负极材料中扩散系数的测定[J].物理化学学报,2001,17(5):385-388. 被引量:13

二级参考文献5

  • 1Yu P,J Electrochem Soc,1999年,146卷,8页
  • 2唐致远,化学通报网络版,1999年,8卷,99088页
  • 3曹高萍,博士学位论文,1998年
  • 4吴浩青,电化学动力学,1998年,216页
  • 5田昭武,电化学研究方法,1984年,207页

共引文献12

同被引文献8

  • 1SATAMEH Z M, CASACCA M A,LYNCH W A. A mathematical model for lead-acid batteries[J]. Energy Conversion, 1992, 7 (1):93-98.
  • 2CAUMONT O, MOIGNE P L, ROMBAUT C, et al. Energy gauge for lead-acid batteries in electric vehicles[J]. Energy Conversion,2000, 15 (3): 354-360.
  • 3HUET F. A review of impedance measurements for determination of the state-of charge or state-of-helth of secondary batteries[J].Journal of Power Sources, 1998, 70 (1): 59-69.
  • 4O'GORMAN C C, INGERSOLL D, G.JUNGST R, et al. Artificial neural network simulation of battery performance [A]. System Sciences[C]. Kohala Coast, HI, USA: Proceedings of the Thirty-First Hawaii International Conference, 1998. 115- 121.
  • 5CHAN C C, LO E W C, SHEN Wei-xiang. The available capacity computation model based on artificial neural network for lead-acid batteries in electric vehicles[J]. Journal of Power Sources, 2000, 87(1-2): 201-204.
  • 6SHEN W X, CHAN C C, LO E W C, et al. A new battery available capacity indicator for electric vehicles using neural network[J].Journal of Power Sources, 2002, 43(6): 817-826.
  • 7GREWAL S, GRANT D A. A novel technique for modeling the state of charge of lithium ion batteries using artificial neural networks[A]. Telecommunications Energy Conference[C].INTELEC, 2001. 174-179.
  • 8LAM H K, LING S H, LEUNG F H F, et al. Tuning of the structure and parameters of neural network using an improved genetic algorithm[A]. Industrial Electronics Society[C]. Denver, CO, USA:IECON′01, 2001.25-30.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部