摘要
根据油田注水机组节能优化控制的特点 ,采用神经网络直接自适应控制 ,可以根据控制对象的动态变化来调整控制系统内部参数。对神经网络采用改进的基因遗传算法进行训练 ,可以实现神经网络权值和结构的同时优化。
According to the specific character of water flooding sets for energy-economizing optimizing control in oil field, Neural Network Direct Adaptive Control (NNDAC) is adopted. NNDAC can adjust interior parameters of control system to fit the dynamic change of the controlled object. Using Genetic Algorithms (GA) to train Neural Network (NN), the weight and structure of NN is optimized at the same time.
出处
《机械设计与制造工程》
2002年第2期43-44,共2页
Machine Design and Manufacturing Engineering