期刊文献+

多目标进化算法的研究 被引量:8

THE STUEY ON MULTIOBJECTIVE EVOLUTIONARY ALGORITHM
原文传递
导出
摘要 简要介绍了多目标进化算法的研究历史分类及主要方法,并提出了今后需要研究的问题。 Generally solving optimization problems with multiple objectives is a very difficult. Evolutionary algorithms of artificial intelligence were initially applied to this field from the mid-eighties. During (he past decade, a variety of multi-objective evolutionary algorithm techniques have been come forth and some of them have been applied to engineering practice successfully. Thus a popular area of research has formed recently. This paper discusse some related researches and put forward some problem that need to be studied in future.
出处 《中国科学基金》 CSCD 北大核心 2002年第1期17-19,共3页 Bulletin of National Natural Science Foundation of China
关键词 人工智能 多目标优化 多目标进化算法 遗传算法 MOEA artificial intelligence, multiobjective optimization, multiobjective evolutionary algorithm, genetic algorithm
  • 相关文献

参考文献17

  • 1Coello C A C. List of reference on evolutionary multiobjective optimization. http://www lania. mx/ccoello/EMOO/EMOObib. html.
  • 2Hwang C L, Masud A S M. Multiple Objective Decision Making-methods and Application. Berlin: Springer verlag, 1979.
  • 3Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of the 1st International Conference on Genetic Algorithms. Lawrence Erlbaum Associates, Hillsdale. 1985,93-100.
  • 4http ://www. tik. ee. ethz. ch/emo/
  • 5Van Veldhuizen D A, Lamont G B. Multiobjective evolutionary algorithms: aAnalyzing the state-of-the-Art. IEEE Transactions on Evolutionary Computation. 2000, 8(2):125-147.
  • 6Hajela P, Lin C Y. Genetic search strategies in multi-chterion optional design. Structural Optimization, 1992,4:99-107.
  • 7Fonseca C M, Fleming P J. Genetic algorithms for multi-objective optimization: formulation, discussion and generalization. In: Proceedings of the fifth international conference on genetic algorithms. 1993: 416-423.
  • 8Horn J, Nafpliotis N, Goldberg D E. A niched Pareto genetic algorithm for multiobjective optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE W orld Congress on Computational Computation, Piscataway, NJ. 1994, 1:82-87.
  • 9Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation, 1999, 3(4) :257-271.
  • 10Deb K. Construction of test problems for multi-objective optimization.In: Banzhaf W et al Eds. GECCO-99, Proceedings of the Genetic and Evolutionary Computation Conference. San Francisco: Morgan Kaufmann, 1999,(1): 164-171.

同被引文献61

  • 1卢香清,谭迎军.有关多目标遗传算法的研究[J].南阳师范学院学报,2004,3(9):62-64. 被引量:11
  • 2刘淳安,王宇平.基于新模型的多目标遗传算法[J].西安电子科技大学学报,2005,32(2):260-263. 被引量:14
  • 3黄天辉,沈平孃.均匀设计优选微波萃取五味子的工艺研究[J].中成药,2006,28(8):1111-1113. 被引量:21
  • 4胡敏达.实用多目标最优化[M].上海:上海科学技术出版社,1990..
  • 5S Chen, K Nahrstedt. An overview of quality-of-service routing for next-generation high-speed networks: Problems and solutions.IEEE Network, 1998, 12(6): 64~79
  • 6F Kuipers, P Van Mieghen, T Korkmaz, et al. An overview of constraint-based path selection algorithms for QoS routing. IEEE Communications Magazine, 2002, 40(12): 50~55
  • 7M R Garey, D S Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. New York: W H Freeman and Company, 1979
  • 8马振华.现代应用数学手册--运筹学与最优化理论卷.北京:清华大学出版社,1998(Ma Zhenhua. Modern Applying Mathermatics ManualOperational Research and Optimization Theory (in Chinese) .Beijng: Tsinghua University Press, 1998)
  • 9A Juttner, B Szviatovszki, I Mecs, et al. Lagrange relaxation based method for the QoS routing problem. INFOCOM 2001,Alaska, USA, 2001
  • 10Z Wang, J Crowcroft. Quality-of-service routing for supporting multimedia applications. IEEE Journal on Selected Areas in Communications, 1996, 14(7): 1228~1234

引证文献8

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部