无相互作用的相互稳定自治系统动力学的一个评注(英文)
A Remark on Dynmics of Mutual Stable Autonomous Dynamical Systems without Interactions
摘要
本文证明了无相互作用的相互渐近稳定的自治系统的动力学非常简单 ,因此人们应该研究具有相互作用的或耦合的系统的相互稳定性 .
This paper shows that the dynamics of asymptotically mutual stable autonomous systems is simple, therefore one should study mutual stability in dynamical systems with couplings or interaction.
出处
《应用数学》
CSCD
北大核心
2002年第2期5-8,共4页
Mathematica Applicata
参考文献10
-
1[1]Agarwal R P. Difference Equations and Inequalities[M]. New York: Marcel Dekker,1992
-
2[2]Pang P Y H and Agarwal R P. Stability of general class of difference systems[J]. Computers Math.Applic. , 1998,36:423~429.
-
3[3]Yang Xiaosong. A note on Mutual stability[J]. Chaos, Solitons & Fractals, 1999,9(10): 1463~1464
-
4[4]Yang Xiaosong. Liapunov asymptotic stability and Zhukovskij asymptotic stability[J]. Chaos, Solitons & Fractals, 2000,11:1995~1999.
-
5[5]Yang S S (X-S. Yang) and Duan C K. Generalized synchronization in chaotic systems[J]. Chaos, Solitons & Fractals 1998,9:1703~1707.
-
6[6]Yang X S. Concept of synchronization in dynamical systems[J]. Phys. Let. A, 1999,260: 340~344.
-
7[7]Pecora Land Carroll T. Synchronization in chaotic systems[J]. Phys. Rev. Lett. 1990,64:821~824.
-
8[8]Glass L and Mackey M C. From Clocks to Chaos: The Rhythms of Life[M]. Princeton:Princeton Univ.Press, 1988.
-
9[9]Parlitz U et al. Subharmonic entrainment of ustable period orbits and generalized synchronization[J].Phys. Rev. Lett. , 1997,79:3158~3161
-
10[10]Kittel A et al. Generalized synchronization of chaos in electronic circuit experiments[J]. Physica D,1998,112:459~471