期刊文献+

Timoshenko-Euler楔形梁有限元 被引量:6

Tapered Timoshenko-Euler Beam Element
下载PDF
导出
摘要 本文首先建立楔形梁包含轴力和剪切变形效应的平衡微分方程。由于该方程是二阶变系数微分方程,其解析解很难得到。本文通过将该方程中的变系数和方程的解用Chebyshev多项式逼近得到了Timoshenko-Euler楔形梁的单元刚度方程。最后通过算例检验了所得单元刚度方程的对称性,以及验证了计算悬臂梁挠度和悬臂柱弹性临界力的正确性及其收敛性。本文提出的方法可适用于任意变截面Timosnenko-Euler梁单元刚度方程的求解。运用此方法,除可以考虑轴力和剪切变形的影响外,还可以减少结构分析中的单元数和自由度,提高包含楔形构件的结构分析的精度和速度。 In this paper, the equilibrium differential equation including the effects of constant axial force and shear deformation was established for tapered beams. Since this equation is a second-order differential equation with variable coefficients, it is hard to find the closed soultion. To solve the problem, Chebyshev polynomial series was proposed for the solution to the equation. And the expression of the stiffness equation could be obtained for tapered Timoshenko-Euler beam elements. The symmetry of the stiffness matrix was checked, and the accuracy and convergence of the solution were verified by the numerical applications on predicting the deformations and elastic critical loads of tapered cantilever beams. The proposed strategy is suitable for any element with variable sections. The utility of this approach in structural analysis not only consider the effects of axial force and shear deformation, but also reduce the number of element and degree of freedom. In other words, it can improve the accuracy and speed of structural analysis comprising tapered members.
出处 《力学季刊》 CSCD 北大核心 2002年第1期64-69,共6页 Chinese Quarterly of Mechanics
关键词 楔形梁 变系数微分方程 Chebyshev逼近 单元刚度 tapered beam differential equation with variable coefficients Chebyshev polynomial ele- mental stiffness
  • 相关文献

同被引文献24

  • 1赵斌,王正中.楔形变截面梁单元力学模型的研究[J].钢铁研究,2002,30(5):28-30. 被引量:2
  • 2COOK R D. Concepts and applications of finite element analysis[M]. Second Edition. Hoboken: John Wiley & Sons,1981.
  • 3Eisenberger M. Exact solution for general variable cross-section members[J]. Computers & Structures, 1991,41 (4) :765-772.
  • 4A1-Gahtani H J. Exact stiffness for tapered members [J]. Journal of Structural Engineering, 1996, 122 (10) .- 1234-1239.
  • 5Lu N L,Meng L X. The element stiffness matrix of a tapered beam with effects of shear deformation and its stability application [J 1. Advanced Materials Research, 2011,308-310 .. 1383-1388.
  • 6Brown C J. Approximate stiffness matrix for tapered beams[-J]. Journal of Structural Engineering, 1984, 110(12) ..3050-3055.
  • 7Du X X,Peng P,Luo F X. Calculation of any element with tapered beam member based on the method of equivalent moment of inertiaEJ]. Advanced Materials Research, 2011,243-249 : 650-655.
  • 8Friedman Z,Kosmatka J B. Exact stiffness matrix of a nonuniform beam-II, bending of a timoshenko beam EJ]. Computers Structures, 1993,49(3) : 545-555.
  • 9龙驭球,包世华.结构力学II~专题教程(第2版)[M].北京:高等教育出版社,2006.
  • 10Meng L X,Lu N L,Liu S M. Exact expression of ele- ment stiffness matrix for a tapered beam and its ap- plication in stability analysis[-J]. Advanced Materials Research ,2011,255-260 : 1968-1973.

引证文献6

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部