期刊文献+

反馈系统强镇定的区间算法 被引量:3

Interval algorithm for strong stablization of feedback system
下载PDF
导出
摘要 反馈系统强镇定不改变受控系统的传递零点 ,而受控系统的传递零点影响反馈系统跟踪参考信号和扰动抑制等能力 ;反馈系统可否强镇定还与两个受控系统是否可同时镇定有密切关系 .给出了判定和计算受控系统强镇定的一种新的算法———区间算法 .这种算法是一种大范围求解方法 ,能同时求出受控系统的全部零点 . The strong stablization of feedback system can′t change the c +e zeros of plant. Since the c +e zeros of feedback system affect its sensitivity to disturbances and its ablity to track reference inputs, it is desirable not to introduce. But this is possible if and only if the plant is strongly stabilizable. This paper gives the interval algorithm to determine whether a plant can be strongly stablizable and construct the stable stabilizing compensator for strong stablization.
出处 《海军工程大学学报》 CAS 2002年第2期1-4,19,共5页 Journal of Naval University of Engineering
基金 国家自然科学基金资助项目 (6 0 0 74 0 0 8)
关键词 反馈系统 强镇定 区间算法 包含单词性 区间扩展 Moor-Krawczyk区间 Newton算子 Horner算法 feedback system strong stablization interval expansion of included monontone Moor\|Krawczyk interval Newton operator Horner algorithm interval algorithm.
  • 相关文献

参考文献7

  • 1Youla D C, Bongiorno J J, Lu C N. Single-loop feedback stabilization of linear multivariable plants [J]. Automatica, 1974,(10):159-173.
  • 2Anderson B D O. A note on the Youla-Bongiorno-Lu condition [J]. Automatica, 1976,(12):387-388.
  • 3Doyle J C, Francis B A, Trannenbarm A R. Feedback control theory [M]. Macmillan Publishing Company, 1999.
  • 4Ying J Q, Lin Z, Xu L. Some algebraic aspects of the strong stabilizability of time-delay linear systems [J]. IEEE Trans. Auto. Contr., 2001,(3):454-457.
  • 5Vidyasagar M. Control System Synthesis [M]. Cambridge, MA: MIT Press,1985.
  • 6李庆扬,莫孜中,祁力群.非线性方程组的数值算法 [M].北京:科学出版社,1992.
  • 7Qi L. A note on the Moore test for nonlinear systems [J]. Ibid,1982,19:851-857.

同被引文献23

  • 1HanlinHE ZhongshengWANG XiaoXinLIAO.On the order of stable compensators for a class of time-delay system[J].控制理论与应用(英文版),2004,2(1):85-88. 被引量:3
  • 2何汉林,廖晓昕,章向明.纯量反馈系统同时强镇定的充分条件[J].应用泛函分析学报,2004,6(2):160-165. 被引量:1
  • 3麻世高,于静波.一类线性时变系统的反馈镇定[J].天津轻工业学院学报,2003,18(B12):4-5. 被引量:1
  • 4[1]Youla D, Bongiorno J, Lu C. Single-loop feedback stabilization of linear multivariable dynamical plants [J]. Automatica, 1974, 10(2):159-173.
  • 5[2]Vidyasagar M. Control System Synthesis: A Factorization Approach [M].MA: MIT Press, 1985.
  • 6[3]Ying J Q. Conditions for strong stabilizabilities of n-dimensional systems [J]. Multidimensional Syst. Signal Processing,1998,9(1):125-148.
  • 7[4]Ying J Q. On the strong stabilizabilities of MIMO n-dimensional linear systems [J]. AIAM J. Control Optim., 2000,38(2):313-335.
  • 8[5]Lin Z, Ying J, Xu L. An algebraic approach to strong stabilizability of linear nD MIMO systems [J]. IEEE Trans. Automat. Contr., 2002,47(9):1510-1514.
  • 9[6]Fonte C, Zasadzinski M, Bernier C, et al. On the simultaneous stabilization of three or more plants [J]. IEEE Trans. Automat. Contr., 2001,46(7):1101-1107.
  • 10[7]Saif A W, Gu D W, Kavranoglu D, et al. Simultaneous stabilization of MIMO systems via robustly stabilizing a central plant [J]. IEEE Trans. Automat. Contr.,2002,47(2):363-369.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部