摘要
针对一般形式的多输入多输出(MIMO)非线性微分代数系统的跟踪和系统参数的不确定性,利用M导数和M括号及其MIMO反馈线性化技术,在当系统的M关系度小于系统的阶数及其满足某些指定的条件下,得到微分代数系统模型的标准形式。根据线性系统的控制理论及其跟踪目标的要求,给出了一般非线性控制规律的表达式。考虑到实际系统中的参数不确定性或未知性,难以预先构造非线性反馈控制规律来保证整个系统的稳定性,对于微分代数系统中存在参数不确定时,运用Lyapunov稳定性的理论方 法,采用适当的参数自适应方法来估计未知的不确定的参数值并加以修正,很好地实现了系统跟踪的控制目的。
In view of the tracking of general formal multi-input and multi-output (MIMO) nonlinear differential algebraic systems (NDAS) and the unccrtaintics of systemic parameters. The concept and definition of M derivative and M bracket based on differential algebraic systems, the normal form of differential algebraic systemic model is obtained by MIMO feedback linearization technology when systemic relative degree is less than systemic dimension and the some designated conditions are satisfied. In the light of the control theory of linear system and the requirements of tracking goal, the expression of general nonlinear control law is derived. Since the indeterminateness or uncertainty of parameters in practical systems, the nonlinear feedback control laws are pre-constructed quite difficultly to pledge the stability of whole systems, so that the suited parametric adaptive method are used to estimate and revise unknown uncertain parameter values by the theoretical method of Lyapunov stability, which realize nicely the control purpose of systemic tracking.
出处
《中国电机工程学报》
EI
CSCD
北大核心
2002年第5期5-9,共5页
Proceedings of the CSEE
基金
国家重点基础研究发展规划项目(G1998020300)
中国博士后基金项目。
关键词
电力系统
参数
自适应控制
多机系统
Differential algebraic control system
M derivative
M bracket
power systems, nonlinear loads
output tracking
parametric adaptive control.