摘要
在推程、回程运动角之和Φ0 +Φ′0 =C(定值 )的情况下 ,必存在某一对推程、回程运动角的最佳分配Optimum {Φ0 ,Φ′0 };当选用该最佳分配时 ,直动从动杆圆锥凸轮基圆半径r0 取得其最小值r0min。在发现、揭示出上述事实的基础上 ,研究解决了当选取最佳分配Optimum{Φ0 ,Φ′0 }时 ,按许用压力角条件求解直动从动杆圆锥凸轮基圆半径最小值r0min 的解析方法。
Under the situation of the sum of moving angles of push travel and of return travel to be a constent, Φ 0+ Φ ′ 0= C (constant),there will certainly exist an optimum distribution of a certain pair of moving angle of push travel and return travel optimun { Φ 0, Φ ′ 0}.When this optimum distribution is being selected,the radius of base circle r 0 of conical cam with translating follower will gain its minimum value r 0min .On the basis of discovering and revealing the above stated fact,this paper studied and settled the analytical method of solving the minimum value of base circle radius of conical cam with translating follower r 0min according to the condition of allowable pressure angle when the optimum distribution optimum { Φ 0, Φ ′ 0} is being selected.
出处
《机械设计》
CSCD
北大核心
2002年第5期24-26,共3页
Journal of Machine Design
基金
福建省自然科学基金资助项目 (E0 0 1 0 0 2 9)
关键词
直动从动杆
圆锥凸轮机构
基圆半径
推程运动角
回程运动角
Conical cam mechanism,Base circle radius,Moving angle of push travel,Moving angle of return travel,Optimum distribution