期刊文献+

一种新的对角回归神经网络快速学习算法 被引量:1

New method for diagonal recurrent neural networks with local error-backpropagation
下载PDF
导出
摘要 提出一种新的动态对角回归神经网络学习算法——局部动态误差反传算法 (L DBP) ,该算法定义了一种新的局部均方差函数 ,并为回归单元建立一种新的学习结构。如果估计出各层的期望输出值 ,多层回归网络便可分解成一组自适应单元 (Adaline) ,而每个单元可通过二次优化方法进行训练。采用可在有限步内找出全局最优解的共轭梯度法 (CG)进行寻优。由于学习过程采用超线性搜索 。 A fast new local dynamic error backpropagation algorithm(LDBP) is presented for the training of diagonal recurrent neural networks(DRNN). This algorithm is based on the definition of a new local mean squared error function. The approximation to a recurrent node has the similar construction as the Adaline (Adaptive linear element). When the local desired outputs of the elements have been estimated, the DRNN can be decomposed into a set of node elements that can be trained by quadratic optimization methods. The conjugate gradient (CG) method is used. The simulation result shows the advantages of the new algorithm.
出处 《控制与决策》 EI CSCD 北大核心 2002年第3期346-348,共3页 Control and Decision
基金 辽宁省自然科学基金项目 (2 6 2 37)
关键词 对角回归神经网络 快速学习算法 共轭梯度法 dynamic error backpropagation(DBP) conjugate gradient(CG) diagonal recurrent neural networks(DRNN) dynamic non linear system system identification
  • 相关文献

参考文献6

  • 1Chao-Chee Ku, Kwang Y Lee. Diagonal recurrent neural networks for dynamic systems control[J].IEEE Trans on Neural Networks, 1995,6(2):144-155.
  • 2沈清 胡得文 时春.神经网络应用技术[M].长沙:国防科技大学出版社,1998.98-100.
  • 3Charalambous C. Conjugate gradient algorithm for efficient training of artificial neural networks[J]. IEE Proc Part G, 1992,139(2):301-310.
  • 4Johansson E M, Dowla F U, Goodman D M.Backpropagation learning for multilayer feed-forward neural networks using the conjugate gradient method[J].Int J of Neural Systems,1992,2(3):291-301.
  • 5Williams R J, Zipser D. A learning algorithm forcontinually running fully recurrent neural networks[J]. Neural Computation,1991,3(4):375-385.
  • 6Chin-Sung Liu, Ching-Huan Tseng. Quadratic opti-mization method for multilayer neural networks with local error-backpropagation[J].Int J of Systems Science,1999,30(7):889-898.

共引文献5

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部