摘要
提出一种新的动态对角回归神经网络学习算法——局部动态误差反传算法 (L DBP) ,该算法定义了一种新的局部均方差函数 ,并为回归单元建立一种新的学习结构。如果估计出各层的期望输出值 ,多层回归网络便可分解成一组自适应单元 (Adaline) ,而每个单元可通过二次优化方法进行训练。采用可在有限步内找出全局最优解的共轭梯度法 (CG)进行寻优。由于学习过程采用超线性搜索 。
A fast new local dynamic error backpropagation algorithm(LDBP) is presented for the training of diagonal recurrent neural networks(DRNN). This algorithm is based on the definition of a new local mean squared error function. The approximation to a recurrent node has the similar construction as the Adaline (Adaptive linear element). When the local desired outputs of the elements have been estimated, the DRNN can be decomposed into a set of node elements that can be trained by quadratic optimization methods. The conjugate gradient (CG) method is used. The simulation result shows the advantages of the new algorithm.
出处
《控制与决策》
EI
CSCD
北大核心
2002年第3期346-348,共3页
Control and Decision
基金
辽宁省自然科学基金项目 (2 6 2 37)
关键词
对角回归神经网络
快速学习算法
共轭梯度法
dynamic error backpropagation(DBP)
conjugate gradient(CG)
diagonal recurrent neural networks(DRNN)
dynamic non linear system
system identification