摘要
支持向量机(support vector machine,简称SVM)是一种基于结构风险最小化原理的分类技术,也是一种新的具有很好泛化性能的回归方法.提出了一种将回归问题转化为分类问题的新思想.这种方法具有一定的理论依据,与SVM回归算法相比,其优化问题几何意义清楚明确.
The support vector machine is a classification technique based on the structural risk minimization principle, and it is also a class of regression method with good generalization ability. In this paper, a new idea that each regression problem can be changed into a classification problem is presented. The proposed method has some theoretical foundations. Compared with SVM regression method, the geometric meaning of optimization problem in this paper is very clear and obvious.
出处
《软件学报》
EI
CSCD
北大核心
2002年第5期1024-1028,共5页
Journal of Software
基金
国家自然科学基金资助项目(60175023)
中国博士后科学基金资助项目(5030436)
安徽省自然科学基金资助项目(01042304)
安徽省优秀青年基金资助项目~~