期刊文献+

严格反馈随机非线性系统风险灵敏度输出反馈控制器设计

OUTPUT FEEDBACK RISK-SENSITIV CONTROL DESIGN FOR STRICT-FEEDBACK STOCHASTIC NONLINEAR SYSTEMS
下载PDF
导出
摘要 研究了一类严格反馈随机非线性系统的输出反馈设计问题 .在无限时区风险灵敏度指标下 ,应用积分反推 (integrator backstepping)技术 ,设计了控制器 .所设计的控制器能够保障对任意风险灵敏度系数具有任意小的指标 ,并且闭环系统为概率意义下有界的 .特别地 ,所设计的控制器还能保证控制器的平衡条件 . In this paper, we study the problem of output-feedback control design for a class of strict feedback stochastic nonlinear systems. Under an infinite-horizon risk-sensitive cost criterion, the controller designed can guarantee an arbitrary small long-term average cost for arbitrary risk-sensitivity parameter and achieve boundedness in probability for the closed-loop system using the integrator backstepping methodology. Especially, the controller preserves the equilibrium of the nonlinear system. An example is included to illustrate the theoretical findings.
出处 《自动化学报》 EI CSCD 北大核心 2002年第3期391-400,共10页 Acta Automatica Sinica
基金 国家自然科学基金 ( 6 0 0 0 4 0 0 5 ) 教育部 ( 2 0 0 0 )优秀青年教师资助计划项目资助
关键词 严格反馈随机非线性系统 风险灵敏度 输出反馈控制器 设计 Integrator backstepping, strict-feedback stochastic nonlinear systems, risk-sensitive control, bounded in probability
  • 相关文献

参考文献13

  • 1[1]Isidori A. Nonlinear Control Systems. London: Springer-Verlag, 3rd ed., 1995
  • 2[2]Kanellakopoulos I, Kokotovic P V, More A S. Systematic design of adaptive controllers for feedback linearizable systems. IEEE Trans. Autom. Control, 1991, 36(11):1241~1253
  • 3[3]Krstic M, Kanellakopouls I, Kokotovic P V. Nonlinear and Adaptive Control Design. New York, NY: Wiley, 1995
  • 4[4]Pan Z, Basar T. Adaptive controller design for tracking and disturbance attenuation in parametric-feedback nonlinear systems. IEEE Trans. Autom. Control, 1998, 43(8):1066~1083
  • 5[5]Jiang Z-P, Nijmeijer H. A recursive technique for tracking control of nonholonomic systems in chained form. IEEE Trans. Autom. Control, 1999, 44(2):265~279
  • 6[6]Ezal K, Pan Zigang, Kokotovic P V. Locally optimal backstepping design. IEEE Trans. Autom. Control, 2000, 45(2):260~271
  • 7[7]Basar T, Bernhard P. H∞-Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach. Boston, MA: Birkuser, 2nd ed., 1995
  • 8[8]James M R, Baras J, Elliott R J. Risk-sensitive control and dynamic games for partially observed discrete-time nonlinear systems. IEEE Trans. Autom. Control, 1994, 39(7):780~792
  • 9[9]Whittle P. Risk-Sensitive Optimal Control. Chichester, NY: John Wiley and Sons, 1990
  • 10[10]Fleming W H, McEneaney W M. Risk-sensitive control on an infinite time horizon. SIAM J. Contr. Optim., 1995, 33(6):1881~1915

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部