期刊文献+

基于结构的神经网络在系统建模中的应用 被引量:5

Application of Neural Networks Based on System Architecture in Nonlinear Modeling
下载PDF
导出
摘要 针对复杂非线性系统的建模问题,提出一种基于结构的神经网络建模方法。将一个复杂系统转化为若干个较简单的子系统,分别用函数链神经元建立各子系统的模型,然后根据子系统间的相互作用关系连接成一个完整的网络,即基于结构的神经网络。分析了网络的性能,探讨了在复杂系统建模中的应用。对Y2-Hc10型先导式溢流阀的仿真表明了该方法是可行和有效的。 A novel method of nonlinear system modeling is presented, which employs neural networks based on system architecture. This method translates a complicated system into some simple sub-systems. Each sub-system is modeled with a functional link neuron. Then the neurons are connected into an integrated network according to the relationship between these sub-systems. The performance of the networks is analyzed, and its application in complicated system modeling is discussed, too. The feasibility and validity of the method is illustrated by a simulation on Y2-Hc10 pilot operated relief valve.
出处 《系统仿真学报》 CAS CSCD 2002年第5期557-561,共5页 Journal of System Simulation
关键词 神经网络 系统建模 函数链神经元 液压元件 计算机仿真 system architecture neural networks functional link neuron modeling hydraulic component
  • 相关文献

参考文献3

共引文献6

同被引文献20

  • 1黄来,陆继东,夏凡,张振顶,李昌军.分解炉虚拟样机的开发[J].系统仿真学报,2005,17(3):642-645. 被引量:3
  • 2刘军,张洪全,李学良.一种功能分区神经网络的结构及在复杂系统建模中的应用[J].青岛化工学院学报(自然科学版),1996,17(1):82-84. 被引量:6
  • 3詹永麒,孙巍,张世华.液压缓冲器动态仿真[J].液压气动与密封,1996,16(1):5-8. 被引量:17
  • 4Pao Y H 马颂德 张恭清 高雨清译.自适应模式识别与神经网络[M].北京:科学出版社,1989..
  • 5包约翰 马颂德 张恭清 高雨清.自适应模式识别与神经网络[M].北京:科学出版社,1989.192-216.
  • 6PaoYH 马颂德 张恭清 高雨清 译.自适应模式识别与神经网络[M].北京:科学出版社,1989..
  • 7Cook D.F, Ragsdale C.T, Major R.L. Combining a Neural Network with a Genetic Algorithm for Process Parameter Optimization [J].Engineering Applications of Artificial Intelligence, 2000, 13: 391-396.
  • 8Malinov S, Sha W, MicKeown J.J. Modeling the Correlation between Professing Parameters and Properties in Titanium Alloys using Artificial Neural Networks [J]. Computational Materials Scieace, 2001,21: 375-394.
  • 9Cook D F, Ragsdale C T, Major R L. Combining a neural network with a genetic algorithm for process parameter optimization. Engineering Applications of Artificial Intelligence, 2000, 13(4): 391~396.
  • 10Malinov S, Sha W, MicKeown J J. Modeling the correlation between processing parameters and properties in titanium alloys using artificial neural networks. Computational Materials Science, 2001, 21(3): 375~394.

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部