期刊文献+

加细方程解的稳定性、正交性与细分格式收敛的关系

The relation between the stability and orthogonality of the solution for refinement equation and the subdivision scheme convergence
下载PDF
导出
摘要 主要讨论了多元向量细分方程解的稳定性、正交性与向量细分格式收敛的关系 。 Mainly dicusses the relation between the stability and orthogonality of the solution for vetor refinement equation and vecctor subdivision scheme cnvergence,and additionaly colerates subdivision scheme convergence with the construction of compactedly orthogonal wavelet.
作者 陈涛
出处 《湖北大学学报(自然科学版)》 CAS 2002年第1期6-10,共5页 Journal of Hubei University:Natural Science
基金 湖北省自然科学基金资助
关键词 加细方程 稳定性 正交性 向量细分格式收敛 紧支撑正交小波 小波分析 refinement equation subdivision scheme convergence stability wavelet
  • 相关文献

参考文献8

  • 1[1]Han B,Jia R Q.Mutivariate refinement equations and convergence of subdivion schemes[J].SIAM J Math Anal,1998,29(5):1177~1199.
  • 2[2]Hogan T A.A note on matrix refinement equation[J].SIAM J Math Anal,1998,29(4):549~554.
  • 3[3]Heil C, Collela D.Matrix refinement equations:existence and uniquenss[J].J Fourier Anal Appl,1995,2:363~377.
  • 4[4]Dahmen W,Micchelli C A.Biothogonal wavelet expansions[J].Constr Approx,1997:13:293~328.
  • 5[5]Jia R Q, Wang J Z.Stability and llinear independence associated with wavelet decompositions[J].Proc Amer Math Soc,1993,117(4):1115~1124.
  • 6[6]Jia R Q, Miccheilli C A.Using refinement equation for the construction of prewavelets V:extensibility of trigonometric polymomials[J].Computing,1992,48:61~72.
  • 7[7]Dahmen W, Micchelli C A.On stationary subdivision and the construction of compactly supported orthonomarl wavelets[A].Haussmann W,Jetter K.Mutivariate interpolation and appromation[C].Bessel:Birkhauser Verlag,1990.69~90.
  • 8[8]Jia R Q,Riemenschneider S D,Zhou D X.Vector subdivision schemes and multiple wavelets[J].Math Comp,1998,67(224):1533~1563.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部