期刊文献+

基于机器学习的超分辨率问题的研究 被引量:1

Machine Learning Based Super-resolution and Its Implementation in Computer Vision
下载PDF
导出
摘要 本文给出了一种基于机器学习的处理计算机视觉超分辨率问题的方法,可使原本模糊的图像变得清晰(通过从低分辨率图像中估计出高频细节信息).该方法以马尔可夫网络为基础体系,从大量的例子中学习并获得网络参数,利用贝叶斯信任传播机制为所要处理的图像找到一个后验概率的局部最大值,即为从图像中获得相应的景物而进行问题估计。从而生成一个与所提供的图像相符合的合成的景物世界、实验证明。 This paper show a machine learning-based method for 'super-resolution'in low-level vision, and it can show good results (estimating high frequency details from a low resolution image). It model that world with a Markov network, learning the network parameters from the examples. Bayesian belief propagation allows it to efficiently find a local maximum of the posterior probability for the scene, given the image. It generate a synthetic world of scenes and their corresponding rendered images.
作者 徐东 蔡田丰
出处 《微计算机信息》 2002年第6期62-64,共3页 Control & Automation
关键词 机器学习 超分辨率问题 马尔可夫网络 计算机视觉 图像处理 Markov network, Bayesian belief propagation,posterior probability, prior probability, estimate.
  • 相关文献

参考文献8

  • 1[1]William T.Freeman and Egon C.Pasztor .Learning lowlevel vision.Technical report,MERL, a Mitsubishi Electric Research Lab., 1999.
  • 2[2]Brendan J.Frey Graphical Models for Machine Learningand Digital Communication. A Bradford Book The MIT Press.Cambridge, massachusetts, London, England. 1998.
  • 3[3]Martin Neil and Norman Fenton and Lars Nielsen. Buiding Large-scale Bayesian networks.The Knowledge EngineeringReview, Vol.15:3,2000, 257 -284.Printed in the United Kingdom.Copyright 2000, Cambridge University Press.
  • 4[4]M.I.Jordan, editor. Learning in Graphical models. MITPress, 1998.
  • 5[5]Y.Weiss. Belief propagation and revision in networks withloops. Technical Report 1616, Al Lab Memo, MIT, Cambridge, MA02139, 1998.
  • 6[6]Y.Weiss and W.T.Freeman. Correctness of belief propagation in Gaussian graphical m Gaussian Graphical models of arbitrary topology. Technical Report UCB:CSD-99-1046, BerkeleyComputer Science Dept., 1999.
  • 7[7]William T.Freeman and Egon C.Pasztor .Learning go estiimnate scenes from images. In M.S.Kearns, S.A.Solla, and D.A.Cohn, editors, Adv. Neural Information Processing System, volume11, Cambridge, MA, 1999.MIT Press.
  • 8[8]ZHANG Zhi-ming, WANG Yue,TAO Ran,ZHOU Siyong. Suppression of speckle in SAR Images Using WaveletBased HMM.Journal of Beijing Institute of Technology, 2001, Vol.10, No.1.

同被引文献3

  • 1WEISS Y.MA 02139 .Technical Report 1616 .Belief propagation and revision in networks with loops[s]. Cambridge:MIT, 1998:2-5.
  • 2WEISS Y,FREEMAN W T. Technical Report UCB.CSD-99-1046.Correctness of belief propagation in Gaussian graphical models of arbitrary topology [s].USA:Berkeley Computer Science Dept., 1999:1-4.
  • 3WILLIAM T.F and EGON C.P and OWEN T.C. Learning low-level vision[J].2000(5): 1-7.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部