期刊文献+

基于小波变换的图像编码方法

Image Coding Scheme Based on Wavelet Transform
下载PDF
导出
摘要 通过研究双正交小波变换的结构以及消失矩特性 ,利用线性方程组的求解 ,提出了一种双正交小波变换的构造方法 ,从而设计出一种新型的含参数 9/ 7双正交变换 .对于不同的小波变换系数参数 ,根据其不同性质讨论了不同小波实施图象压缩的恢复图象质量及其计算方面的性能 .当小波系数为简单整数时 ,图像压缩的数值实验表明 ,该方法在保证良好压缩性能的前提下 。 As a new type of multiresolution frequency transform theory, wavelet transform has been widely used in applied mathematics?physical and inform science. In image processing, especially in image compression, recently last ten years, investigations and applications of image compression with wavelet transforms are very active. By analyzing construction and vanishing moment properties of biorthogonal wavelets, we propose a very simple method by the solution of linear equations, so that a new wavelet construction method that contains parameters is presented. For various wavelet parameters, and based on properties, we discuss performance of quality and computation of restoration image by means of wavelets in this paper. When wavelet coefficients are simple integers, simulation experiment shows that the new method can retain both high compression performance and very good fast computational feature.
作者 朱桂华
出处 《吉首大学学报(自然科学版)》 CAS 2002年第1期17-20,共4页 Journal of Jishou University(Natural Sciences Edition)
基金 国家自然科学基金资助项目 (10 17110 9)
关键词 小波变换 图像编码 快速算法 图像压缩 图像恢复 压缩比 9/7双正交小波 wavelet transform image coding fast algorithm compression
  • 相关文献

参考文献6

  • 1CASTLEMAN K. Digital Image Processing[ M]. Prentice - Hall Inc., 1996.
  • 2COHEN A I, DAUBECHIES I, FEAUVEAU J C. Bi- orthogonal Bases of Compactly Supported Wavelets[ J ]. Comm. Pure and Applied Math., 1992,45:485 - 560.
  • 3LAWTON W M, Necessary and Sufficient Condtions for Existence of on Wavelet Bases[ J]. J. Math. Phys., 1991,32:57 - 61.
  • 4MATLLAT S. A Theory for Multiresolution Signal Decomposition:The Wavelet Representation[J] .IEEE Trans. PAMI- 11,1989,11:674-693.
  • 5DABUCHIES I. Orthogonal Bases of Compactly Supported Wavelets, Comm[ J]. Pure Applied Math., 1988,41:909- 996.
  • 6LEWIS A S, KNOWLES G. Image Compression Using the 2 - D Wacelet Transform[ J]. IEEE Trans. Image Processing, 1992,1 (2):205-220.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部