摘要
本文利用初等Fourier变换,证明了Sobolev空间H^s(R^N)中的迹映射是连续线性映射,并指出了原著[1]和[1]的英译本[4],在证明一般抽象的迹定理中的某些疏漏,简叙了纠正这些疏漏的方法。
Based on the primary Fourier Conversion, this paper proofs that the trace mapping in H^S(R^M) of the Sobolev Space is the linear continual mapping, indicates the some errors in Ref. land4 when they proof the general abstract trace mapping theorem, and presents the methods correcting these errors.
基金
国家自然科学基金
关键词
迹映射定理
傅氏变换
映射
疏漏
Fourier conversion
Mapping
Trace mapping tneorem