期刊文献+

分子筛变压吸附产氧装置数学模型 被引量:4

A mathematical model of pressure swing adsorption bed of air separation unit
原文传递
导出
摘要 目的 建立分子筛变压吸附产氧装置的数学模型 ,研究影响吸附特性的因素对产氧浓度的影响。 方法 主要以理论方法进行研究 ,即针对实际系统做出相应假设 ,用数学模型表达物理模型。该模型未考虑吸附过程的热效应 ,认为吸附过程为等温 ;采用了 L angm uir等温吸附方程模拟分子筛的吸附特性 ;用线性驱动力方程描述传质过程 ;模型的数值求解方法采用有限差分法 ;分析了供气压力、流速和长径比等对产氧浓度的影响。 结果 在一定条件下 ,入口气流速度越小系统产氧浓度越高 ;供气压力越高产氧浓度越高 ;冲洗流量越大系统产氧浓度越高 ,但冲洗流量的增大将使氧回收率减小。 结论 必须同时考虑影响产氧浓度的各因素。机载产氧系统可以在有限的供气压力下满足要求。 Objective To establish a mathematical model of molecular sieve concentrator with pressure swing adsorption, so as to explore the effects of various factors influencing the mole fraction of oxygen. Methods Hypothesis was made based on the actual system, and the physical model was expressed by mathematical model. The thermal effect during adsorption was not taken into consideration. The binary Langmuir equilibrium adsorption equation was adopted to describe the dynamic property between the gas and adsorbent. The linear driving force (LDF) model was applied to describe the mass transfer rate. Numerical solutions were obtained by finite difference method. The effects of parameters, such as the pressure and velocity of inlet gas, cycle time, on the performance of the system were analyzed. Results Under certain circumstance, mole fraction of oxygen increases with the decrease of velocity and the increase of pressure of inlet gas. The increase of the velocity of purge is helpful to mole fraction of oxygen, but can lead to lowering down of O 2 recovery rate. Conclusion All the factors influencing mole fraction of oxygen should be considered simultaneously. Onboard oxygen generating system can satisfy the request of inlet pressure.
出处 《中华航空航天医学杂志》 CSCD 2002年第1期47-50,共4页 Chinese Journal of Aerospace Medicine
关键词 变压吸附 分子筛 机载产氧系统 Pressure swing adsorption Molecular sieve Onboard oxygen generating system
  • 相关文献

参考文献5

  • 1肖华军,袁修干.机载分子筛制氧技术发展的现状与动向[J].航空科学技术,1997(1):26-28. 被引量:21
  • 2杨锋,林贵平,赵竞全.分子筛氧浓缩器非等温吸附模型[J].北京航空航天大学学报,2002,28(1):8-11. 被引量:9
  • 3Ruthven DM, Farooq S, Knaebel KS. Pressure Swing Adsorption. New York:VCH Publishers, 1994.185-191.
  • 4Teague KG Jr, Edgar TF. Predictive dynamic model of a small pressure adsorption air separation unit.Ind.Eng.Chem.Res.1999,38(10):3761-3775.
  • 5Farooq S, Rathor MN, Hidajat K. A predictive model for a kinetically controlled pressure swing adsorption separation process. Chemical Engineering Science,1993,48(24):4129-4141.

二级参考文献4

  • 1[1]Farooq S,Rathor M N,Hidajat K. A predictive model for a kinetically controlled pressure swing adsorption separation process[J]. Chemical Engineering Science,1993,48(24):4129~4141.
  • 2[2]Kazuyuki Chihara,Motoyuki Suzuki. Simulation of nonisothermal pressure swing adsorption[J]. Journal of Chemical Engineering of Japan,1983,16(1):53~61.
  • 3[3]Farooq S,Hassan M M,Ruthben D M. Heat effects in pressure swing adsorption systems[J]. Chemical Engineering Science,1988,43(5):1017~1031.
  • 4[4]Douglas M Ruthven,Shamsuzzaman Farooq. Pressure swing adsorption[M]. New York:VCH Publishers Inc,1994.

共引文献26

同被引文献53

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部