期刊文献+

二、三阶线性微分方程的Liapunov型不等式 被引量:1

On Liapunov Type Inequalities for Differential Equations of Second Order and Third Order
下载PDF
导出
摘要 利用形如x″ +P1 x′+Q1 x=0的二阶线性微分方程和x +P1 0 x″ +Q1 0 x′ +R1 0 x =0的三阶线性微分方程的不变量与不变量组和因变量变换 ,对二、三阶线性微分方程进行了研究 ,得到了其系数满足的Liapunov型不等式 。 In this paper the invariant of linear differential equations and the variable transformation are used to study the Liapunov-type inequalities for the coefficients of linear differential equations of the form x″+P 1x′+Q 1x=0 and x+P 10x″+Q 10x′+R 10x=0. Some known results are unified.
作者 柏林 候学刚
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 2002年第3期275-278,共4页 Journal of Sichuan Normal University(Natural Science)
关键词 不变量 因变量变换 线性微分方程 Liapunov型不等式 振荡解 不变量组 相邻零点 Invariant Variable transformation Liapunov inequality Differential equation.
  • 相关文献

参考文献3

  • 1Liapunov A M.Annals of Mathematics Studies[M].Princeton:Princeton University Press.1949.
  • 2Parhi N,Panigrahi S.On Liapunov-type inequalities for third-order differential equations[J].J Math Anal Appl,1999,233:445~460.
  • 3苟清明.一类三阶微分方程的Liapunov型不等式[J].四川师范大学学报(自然科学版),2001,24(3):258-259. 被引量:1

二级参考文献1

同被引文献5

  • 1[1]Qu I L. The boundedness and solutions of linear differential equations y″+ A(t)y=0[J]. Adv Math,1957,3:409~417.
  • 2[2]Pachpatte B G. On some new inequalities related to certain inequalities in the theory of differential equations[J]. J Math Anal Appl,2000,251:736 ~ 751.
  • 3[3]Pachpatte B G. On some new inequalities related to certain inequalities in the theory of differential equations[J].J Math Anal Appl,1995,189:128~144.
  • 4[5]Pachpatte B G. On a some integral inequalities similar to Bellman-Bihari inequalities[J]. J Math Anal Appl, 1975,49:794 ~ 802.
  • 5[6]Pachpatte B G. An integral inequality of Gronwall-Bellman[J]. Nell Soc Math Grece, 1974,15:7~12.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部