期刊文献+

小波变换方法评价曲线的分形特征 被引量:7

WAVELET TRANSFORM METHOD EVALUATE THE FRACTAL CHARACTERIZATION OF PROFILES
下载PDF
导出
摘要 应用小波变换对Kiesswetter曲线和3种方法生成的分数维布朗运动(FBm)进行了分析,验证了该方法计算分形维数具有较高的精度。在宽广的分形维数范围内,与其他7种计算方法比较表明,小波变换方法的精确性和一致性都最好。小波变换为进一步分辨确定性信号、分形特征的信号或完全随机性的信号提供了一种有效工具,为评价粗糙表面形貌的分形特征提供了前提条件。 Based on the Kiesswetter curve and fractal Brown motion functions with known fractal dimension, wavelet transform method can present accurately the fractal dimension. Furthermore, covering a wide fractal dimension, it is indicated that wavelet transform method is better for calculating the fractal dimensions of the fractal profiles than other 7 methods, which are the box dimension method, the yard stick method, the co-variation method, the structure function method, the variation method, the power spectrum method and the rescaled range analysis method. Wavelet transform method can be applied to distinguish the determinacy, fractal and stochastic process, and to evaluate the fractal characterization of surface profiles.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2002年第5期80-85,共6页 Journal of Mechanical Engineering
基金 国家自然科学基金(50176003) 中科院力学所非线性力学国家重点实验室资助项目
关键词 小波变换 分数维布朗运动 Kiessweetter曲线 分形维数 表面粗糙度 Wavelet transform Fractal Brown motion Kiesswetter curve Fractal dimension
  • 相关文献

参考文献6

二级参考文献16

共引文献144

同被引文献165

引证文献7

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部